4.7 Article

Identification of Fused-Ring Alkanoic Acids with Improved Pharmacokinetic Profiles that Act as G Protein-Coupled Receptor 40/Free Fatty Acid Receptor 1 Agonists

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 55, Issue 4, Pages 1538-1552

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm2012968

Keywords

-

Ask authors/readers for more resources

The G protein-coupled receptor 40 (GPR40)/free fatty acid receptor 1 (FFA1) has emerged as an attractive target for a novel insulin secretagogue with glucose dependency. We previously identified phenylpropanoic acid derivative 1 (3-{4-[(2',6'-dimethylbiphenyl-3-yl)methoxy]-2-fluorophenyl}propanoic acid) as a potent and orally available GPR40/FFA1 agonist; however, 1 exhibited high clearance and low oral bioavailability, which was likely due to its susceptibility to beta-oxidation at the phenylpropanoic acid moiety. To identify long-acting compounds, we attempted to block the metabolically labile sites at the phenylpropanoic acid moiety by introducing a fused-ring structure. Various fused-ring alkanoic acids with potent GPR40/FFA1 activities and good PK profiles were produced. Further optimizations of the lipophilic portion and the acidic moiety led to the discovery of dihydrobenzofuran derivative 53 ((6-{[4'-(2-ethoxyethoxy)-2',6'-dimethylbiphenyl-3-yl]methoxy}-2,3-dihydro-1-benzofuran-3-yl)acetic acid), which acted as a GPR40/FFA1 agonist with in vivo efficacy during an oral glucose tolerance test (OGTT) in rats with impaired glucose tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available