4.7 Article

Discovery of Cyclic Sulfone Hydroxyethylamines as Potent and Selective β-Site APP-Cleaving Enzyme 1 (BACE1) Inhibitors: Structure-Based Design and in Vivo Reduction of Amyloid β-Peptides

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 55, Issue 7, Pages 3364-3386

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm300069y

Keywords

-

Ask authors/readers for more resources

Structure-based design of a series of cyclic hydroxyethylamine BACE1 inhibitors allowed the rational incorporation of prime- and nonprime-side fragments to a central core template without any amide functionality. The core scaffold selection and the structure activity relationship development were supported by molecular modeling studies and by X-ray analysis of BACE1 complexes with various ligands to expedite the optimization of the series. The direct extension from P1-aryl- and heteroaryl moieties into the S3 binding pocket allowed the enhancement of potency and selectivity over cathepsin D. Restraining the design and synthesis of compounds to a physicochemical property space consistent with central nervous system drugs led to inhibitors with improved blood brain barrier permeability. Guided by structure-based optimization, we were able to obtain highly potent compounds such as 60p with enzymatic and cellular IC50 values of 2 and 50 nM, respectively, and with >200-fold selectivity over cathepsin D. Pharmacodynamic studies in APPS1/16 transgenic mice at oral doses of 180 mu mol/kg demonstrated significant reduction of brain A beta levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available