4.4 Article

Role of structural water molecule in HIV protease-inhibitor complexes: A QM/MM study

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 29, Issue 11, Pages 1840-1849

Publisher

WILEY
DOI: 10.1002/jcc.20961

Keywords

structural water; hydrogen bond; HIV protease; QM/MM; ONIOM; MD simulation

Ask authors/readers for more resources

Structural water molecule 301 found at the interface of HIV protease-inhibitor complexes function as a hydrogen bond (H-bond) donor to carbonyl groups of the inhibitor as well as H-bond acceptor to amide/amine groups of the flap region of the protease. In this study, six systems of HIV protease-inhibitor complexes were analyzed, which have the presence of this conserved structural water molecule using a two-layer QM/MM ONIOM method. The combination of QM/MM and QM method enabled the calculation of strain energies of the bound ligands as well as the determination of their binding energies in the ligand-water and ligand-water-protease complexes. Although the ligand experiences considerable strain in the protein bound structure, the H-bond interactions through the structural water overcomes this strain effect to give a net stability in the range of 16-24 kcal/mol. For instance, in 1HIV system, the strain energy of the ligand was 12.2 kcal/mol, whereas the binding energy associated with the structural water molecule was 20.8 kcal/mol. In most of the cases, the calculated binding energy of structural water molecule showed the same trend as that of the experimental binding free energy values. Further, the classical MD Simulations carried out on 1HVL system with and without structural water 301 showed that this conserved water molecule enhances the H-bond dynamics occurring at the Asp-bound active site region of the protease-inhibitor system, and therefore it will have a direct influence on the mechanism of drug action. (c) 2008 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available