4.7 Article

An efficient pair natural orbital based configuration interaction scheme for the calculation of open-shell ionization potentials

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 149, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5048688

Keywords

-

Funding

  1. Max-Planck Society

Ask authors/readers for more resources

A spin adapted configuration interaction scheme is proposed for the evaluation of ionization potentials in alpha high spin open shell reference functions. There are three different ways to remove an electron from such a reference, including the removal of an alpha or a beta electron from doubly occupied or an alpha electron from singly occupied molecular orbitals. Ionization operators are constructed for each of these cases, and the resulting second quantized expressions are implemented using an automated code generator environment. To achieve greater computational efficiency, the virtual space is reduced using an averaged pair natural orbital machinery developed earlier and applied with great success in the calculation of X-ray absorption spectra [D. Manganas et al., J. Chem. Phys. A 122, 1215 (2018)]. Various approximate integral evaluation schemes including the resolution of identity and seminumerical techniques are also invoked to further enhance the computational efficiency. Although the resulting method is not particularly accurate in terms of predicting absolute energy values, with a simple shift in the ionization potentials, it is still possible to use it for the qualitative characterization of the basic features of X-ray photoionization spectra. While satellite intensities cannot be computed with the current method, the inclusion of vibrational effects using a path integral technique allows for the computation of vibrational transitions corresponding to main peaks. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available