4.7 Article

The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 141, Issue 13, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4896611

Keywords

-

Funding

  1. FONDECYT [1130072, 1120093, 1141098]
  2. ICM [120082]
  3. Postdoctoral FONDECYT Project [3140314]

Ask authors/readers for more resources

At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (similar to 73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (similar to 67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp(3) hybridization to form the sigma C-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available