4.7 Article

mBEEF: An accurate semi-local Bayesian error estimation density functional

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 140, Issue 14, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4870397

Keywords

-

Funding

  1. Chemical Sciences, Geosciences and Biosciences Division of the U.S. Department of Energy's Office of Basic Energy Science

Ask authors/readers for more resources

We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-correlation functional generated within the Bayesian error estimation functional framework [J. Wellendorff, K. T. Lundgaard, A. Mogelhoj, V. Petzold, D. D. Landis, J. K. Norskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to give reasonably accurate density functional theory (DFT) predictions of a broad range of properties in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without compromising high performance on adsorption and reaction energies. We thus expect it to be particularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based simulations. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available