4.7 Article

Two-dimensional Fourier transform electronic spectroscopy at a conical intersection

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 140, Issue 12, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4867996

Keywords

-

Funding

  1. National Science Foundation [CHE-1112365]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1112365] Funding Source: National Science Foundation

Ask authors/readers for more resources

We report measurement and modeling of two-dimensional (2D) electronic spectra of a silicon naphthalocyanine (SiNc) in benzonitrile, a system for which the polarization anisotropy reveals passage through a square-symmetric Jahn-Teller conical intersection in similar to 100 fs [D. A. Farrow, W. Qian, E. R. Smith, A. A. Ferro, and D. M. Jonas, J. Chem. Phys. 128, 144510 (2008)]. The measured 2D Fourier transform (FT) spectra indicate loss of electronic coherence on a similar timescale. The 2D spectra arising from femtosecond vibronic dynamics through the conical funnel are modeled by full non-adiabatic treatment of the coupled electronic and vibrational dynamics for a pair of un- damped Jahn-Teller active vibrations responsible for both electronic decoherence and population transfer. Additional damped Jahn- Teller active modes that can cause only decoherence or population transfer are treated with analytical response functions that can be incorporated into the numerical non-adiabatic calculation by exploiting symmetry assignment of degenerate vibronic eigenstates to one of two electronic states. Franck-Condon active totally symmetric modes are incorporated analytically. The calculations reveal that these conical intersection dynamics alone are incapable of destroying the coherence of the initially prepared wavepacket on the experimentally observed timescale and predict an unobserved recurrence in the photon echo slice at similar to 200 fs. Agreement with the experimental twodimensional electronic spectra necessitates a role for totally symmetric vibrational dynamics in causing the echo slice to decay on a similar to 100 fs timescale. This extended model also reproduces the similar to 100 fs ultrafast electronic anisotropy decay in SiNc when an asymmetric solvation mode with a small stabilization energy of similar to 2 cm(-1) is included. Although calculations show that inhomogeneities in the energy gap between excited states can broaden the anti-diagonal 2D lineshape, the anti-diagonal width is dominated by totally symmetric vibrational motions in SiNc. For this shallow conical intersection, the non- adiabatic dynamics destroy electronic coherence more slowly than they destroy electronic alignment. c 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available