4.7 Article

Structural, electronic, and linear optical properties of organic photovoltaic PBTTT-C14 crystal

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 138, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4802033

Keywords

-

Funding

  1. Argonne-Northwestern Solar Energy Research (ANSER) Center
  2. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0001059]

Ask authors/readers for more resources

Poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (PBTTT-C14) is an important electro-optical polymer, whose three-dimensional crystal structure is somewhat ambiguous and the fundamental electronic and linear optical properties are not well known. We carried out first-principles calculations to model the crystal structure and to study the effect of side-chains on the physical structure and electronic properties. Our calculations suggest that the patterns of side-chain has little direct effect on the valence band maximum and conduction band minimum but they do have impact on the bandgap through changing the pi-pi stacking distance. By examining the band structure and wave functions, we conclude that the fundamental bandgap of the PBTTT-C14 crystal is determined by the conduction band energy at the Q point. The calculations indicate that the bandgap of PBTTT-C14 crystal may be tunable by introducing different side-chains. The significant peak in the imaginary part of the dielectric function arises from transitions along the polymer backbone axis, as determined by the critical-point analysis and the large optical transition matrix elements in the direction of the backbone. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available