4.7 Article

Water plays an important role in osmolyte-induced hairpin structure change: A molecular dynamics simulation study

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 137, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4757419

Keywords

biochemistry; hydrogen bonds; molecular biophysics; molecular dynamics method; proteins; water

Funding

  1. National Natural Science Foundation of China [21003003, 21125311, 91027044]
  2. Texas Advanced Computing Center (TACC) at The University of Texas at Austin [TG-MCB110130]

Ask authors/readers for more resources

To investigate how solvent (water) and cosolvent (osmolyte) affect protein structure in various osmolyte solutions, in the present study we used GB1p peptide as the model protein to study its folding process in 2,2,2-trifluoroethanol (TFE)/water and denaturation process in GdmSCN/water solutions, respectively. It was observed that TFE moderately enhances the structure stability of native beta-hairpin, consistent with the previous experimental observation that the hairpin conformation population of several polypeptides is increased in TFE/water solution compared to in pure water. More interestingly, the formation of beta-hairpin is significantly accelerated in TFE/water solution. The accelerated folding of beta-hairpin consists of following sequential events: the accumulation of TFE on protein surface -> less water surrounding carbonyl group (easier dehydration of CO) -> the formation of CO-NH backbone hydrogen bond. In contrary, the denaturation of hairpin structure of GB1p peptide in GdmSCN/water solution is induced by the accumulation of Gdm(+) on protein surface and the hydrogen bonding from water as well as Gdm(+). Therefore, this study shows the importance of water in TFE-induced formation and Gdm(+)-induced denaturation of beta-hairpin structure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757419]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available