4.7 Article

A new parametrizable model of molecular electronic structure

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 135, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3646498

Keywords

-

Ask authors/readers for more resources

A new electronic structure model is developed in which the ground state energy of a molecular system is given by a Hartree-Fock-like expression with parametrized one- and two-electron integrals over an extended (minimal + polarization) set of orthogonalized atom-centered basis functions, the variational equations being solved formally within the minimal basis but the effect of polarization functions being included in the spirit of second-order perturbation theory. It is designed to yield good dipole polarizabilities and improved intermolecular potentials with dispersion terms. The molecular integrals include up to three-center one-electron and two-center two-electron terms, all in simple analytical forms. A method to extract the effective one-electron Hamiltonian of nonlocal-exchange Kohn-Sham theory from the coupled-cluster one-electron density matrix is designed and used to get its matrix representation in a molecule-intrinsic minimal basis as an input to the parametrization procedure - making a direct link to the correlated wavefunction theory. The model has been trained for 15 elements (H, Li-F, Na-Cl, 720 parameters) on a set of 5581 molecules (including ions, transition states, and weakly bound complexes) whose first-and second-order properties were computed by the coupled-cluster theory as a reference, and a good agreement is seen. The model looks promising for the study of large molecular systems, it is believed to be an important step forward from the traditional semiempirical models towards higher accuracy at nearly as low a computational cost. (C) 2011 American Institute of Physics. [doi:10.1063/1.3646498]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available