4.7 Article

Ab initio spectroscopic characterization of the HNNO and ONHN radicals

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 134, Issue 8, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3556990

Keywords

-

Ask authors/readers for more resources

A composite coupled cluster methodology is used with systematic sequences of correlation consistent basis sets to accurately determine the structure, vibrational frequencies, and isotopic shifts for trans-HNNO ((2)A'), cis-HNNO ((2)A'), and ONHN ((2)A'). Anharmonic corrections to the vibrational frequencies and rotational constants are obtained using density functional theory. With basis sets larger than double-zeta, large differences between restricted open-shell Hartree-Fock (ROHF)-based and unrestricted Hartree-Fock (UHF)-based coupled cluster harmonic frequencies are calculated, with the UHF-based ones judged to be more reliable based on an analysis of the orbital hessian eigenvalues. The final calculated anharmonic vibrational band origins are generally in good agreement with the experimental values measured in rare gas matrices. The calculation of the vibrational band origins of the isovalent NO2 molecule at similar levels of theory exhibits an agreement with experiment to within a few wavenumbers. In the latter case, however, a ROHF treatment was required since the UHF approach failed to provide realistic frequencies for the antisymmetric stretching mode. The heat of formation at 0 K of trans-HNNO is calculated to be 50.5 +/- 0.5 kcal/mol using a very similar composite coupled cluster methodology as in the structure and harmonic frequency determinations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3556990]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available