4.7 Article

Modeling the sorption dynamics of NaH using a reactive force field

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2908737

Keywords

-

Ask authors/readers for more resources

We have parametrized a reactive force field for NaH, ReaxFF(NaH), against a training set of ab initio derived data. To ascertain that ReaxFF(NaH) is properly parametrized, a comparison between ab initio heats of formation of small representative NaH clusters with ReaxFF(NaH) was done. The results and trend of ReaxFF(NaH) are found to be consistent with ab initio values. Further validation includes comparing the equations of state of condensed phases of Na and NaH as calculated from ab initio and ReaxFF(NaH). There is a good match between the two results, showing that ReaxFF(NaH) is correctly parametrized by the ab initio training set. ReaxFF(NaH) has been used to study the dynamics of hydrogen desorption in NaH particles. We find that ReaxFF(NaH) properly describes the surface molecular hydrogen charge transfer during the abstraction process. Results on heat of desorption versus cluster size shows that there is a strong dependence on the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. To gain more insight into the structural transformations of NaH during thermal decomposition, we performed a heating run in a molecular dynamics simulation. These runs exhibit a series of drops in potential energy, associated with cluster fragmentation and desorption of molecular hydrogen. This is consistent with experimental evidence that NaH dissociates at its melting point into smaller fragments. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available