4.7 Article

Molecular orbital propagation to accelerate self-consistent-field convergence in an ab initio molecular dynamics simulation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2839857

Keywords

-

Ask authors/readers for more resources

Based on the idea of molecular orbital (MO) propagation, we propose a novel effective method for predicting initial guesses for the self-consistent-field calculations in direct ab initio molecular dynamics (AIMD) simulations. This method, called LIMO, adopts the Lagrange interpolation (LI) polynomial technique and predicts initial MO coefficients at the next AIMD step by using several previous results. Taking into account the crossing and/or mixing of MOs leads to orbital invariant formulas for the LIMO method. We also propose a simple method for determining the optimal degree of the LI polynomial, which corresponds to the number of previous steps. Numerical tests confirm that this proposed method is both effective and feasible. (c) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available