4.7 Article

Induction of Small G protein RhoB by Non-Genotoxic Stress Inhibits Apoptosis and Activates NF-κB

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 226, Issue 3, Pages 729-738

Publisher

WILEY
DOI: 10.1002/jcp.22394

Keywords

-

Funding

  1. Science and Technology Commission of Shanghai Municipality of China [08ZR1404100]

Ask authors/readers for more resources

It has been reported by us and other groups that the expression of small GTP binding protein RhoB can be induced by genotoxic stressors and glucocorticoid (GC), a stress hormone that plays a key role in stress response. Until now stress-induced genes that confer cytoprotection under stressed conditions are largely unknown. In this study, we investigated the effects and mechanism of non-genotoxic stressors, including scalding in vivo and heat stress in vitro on the expression of RhoB. We found for the first time that both scalding, which could induce typical neuroendocrine responses of acute stress and cellular heat stress significantly increased the expression of RhoB at mRNA and protein levels. Moreover, in vitro experiments in human lung epithelial cells (A549) showed that induction of RhoB by heat stress was in a glucocorticoid receptor (GR)-independent manner and through multiple pathways including stabilization of RhoB mRNA and activation of p38 MAPK. Further experiments demonstrated that up-regulation of RhoB significantly inhibited heat stress-induced apoptosis and elevated transcriptional activity of NF-kappa B, but did not affect the expression of Hsp70 in A549 cells. In conclusion, we showed for the first time that RhoB was up-regulated by scalding in vivo and heat stress in vitro and played an important cytoprotective role during heat stress-induced apoptotic cell death. J. Cell. Physiol. 226: 729-738, 2011. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available