4.5 Review

Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue

Journal

JOURNAL OF BIOMECHANICS
Volume 46, Issue 9, Pages 1477-1488

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2013.03.022

Keywords

Validation metric; Mesh quality; Energy; Finite element modeling

Funding

  1. Joint Motion Program (JuMP)-A CIHR Training Program in Musculoskeletal Health Research and Leadership
  2. Natural Sciences and Engineering Research Council of Canada
  3. Western University

Ask authors/readers for more resources

The use of finite element models as research tools in biomechanics and orthopedics has grown exponentially over the last 20 years. However, the attention to mesh quality, model validation and appropriate energy balance methods and the reporting of these metrics has not kept pace with the general use of finite element modeling. Therefore, the purpose of this review was to summarize the current state of finite element modeling validation practices from the literature in biomechanics and orthopedics and to present specific methods and criteria limits that can be used as guidelines to assess mesh quality, validate simulation results and address energy balance issues. Of the finite element models reviewed from the literature, approximately 42% of them were not adequately validated, while 95% and 98% of the models did not assess the quality of the mesh Or energy balance, respectively. A review of the methods that can be used to assess the quality of a mesh (e.g., aspect ratios, angle idealization and element Jacobians), measure the balance of energies (e.g., hour glass energy and mass scaling), and quantify the accuracy of the simulations (e.g., validation metrics, corridors, statistical techniques) are presented. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available