4.5 Article

Investigation of optimal follower load path generated by trunk muscle coordination

Journal

JOURNAL OF BIOMECHANICS
Volume 44, Issue 8, Pages 1614-1617

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2011.03.010

Keywords

Follower load; Finite element method; Biomechanics; Lumbar spine

Funding

  1. Ministry of Education, Science and Technology [2010-0005167]
  2. Korea Research Council of Fundamental Science Technology [P-09-JC-LU63-C01]
  3. Ministry for Health, Welfare and Family Affair, Korea [A084152]
  4. National Research Foundation of Korea [2010-0005167, 과C6A1607] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

It has been reported that the center of rotation of each vertebral body is located posterior to the vertebral body center. Moreover, it has been suggested that an optimized follower load (FL) acts posterior to the vertebral body center. However, the optimal position of the FL with respect to typical biomechanical characteristics regarding spinal stabilization, such as joint compressive force, shear force, joint moment, and muscle stress, has not been studied. A variation in the center of rotation of each vertebra was formulated in a three-dimensional finite element model of the lumbar spine with 117 pairs of trunk muscles. Then, the optimal translation of the FL path connecting the centers of rotations was estimated by solving the optimization problem that was to simultaneously minimize the compressive forces, the shear forces, and the joint moments or to minimize the cubic muscle stresses. An upright neutral standing position and a standing position with 200 N in both hands were considered. The FL path moved posterior, regardless of the optimization criteria and loading conditions. The FL path moved 5.0 and 7.8 mm posterior in upright standing and 4.1 mm and 7.0 mm posterior in standing with 200 N in hands for each optimization scheme. In addition, it was presented that the optimal FL path may have advantages in comparison to the body center FL path. The present techniques may be important in understanding the spine stabilization function of the trunk muscles. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available