4.6 Article

Cyclin-dependent Kinase-1 (Cdk1)/Cyclin B1 Dictates Cell Fate after Mitotic Arrest via Phosphoregulation of Antiapoptotic Bcl-2 Proteins

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 287, Issue 46, Pages 39193-39204

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.391854

Keywords

-

Funding

  1. National Institutes of Health from NCI [CA-109821]
  2. Translational Research Institute Grant [UL1TR000039]

Ask authors/readers for more resources

The prevailing model suggests that cell fate after mitotic arrest depends on two independent and competing networks that control cyclin B1 degradation and the generation of death signals. However, recent evidence for Cdk1/cyclin B1-mediated phosphorylation and inactivation of antiapoptotic Bcl-2 proteins suggests the existence of significant cross-talk and inter-dependence between these pathways. Further, the nature of the mitotic death signals has remained elusive. In this study, we sought to test the hypothesis that fate after mitotic arrest is dictated by the robustness of Cdk1/cyclin B1 signaling to Bcl-2 proteins and to identify signals that may represent a mitotic death signature. We show that when treated with Taxol, slippage-resistant HT29 colon carcinoma cells display robust Cdk1 activity and extensive Mcl-1/Bcl-x(L) phosphorylation and die in mitosis, whereas slippage-prone DLD-1 colon carcinoma cells display weak Cdk1 activity and partial and transient Mcl-1/Bcl-x(L) phosphorylation and die in subsequent interphase or survive. Furthermore, modulation of this signaling axis, either by inhibition of Cdk1 in slippage-resistant HT29 or by enforcing mitotic arrest in slippage-prone DLD-1 cells, evokes a switch in fate, indicating that the strength of Cdk1 signaling to Bcl-2 proteins is a key determinant of outcome. These findings provide novel insight into the pathways that regulate mitotic death, suggest that the robustness of these signaling events may be useful as a marker to define susceptibility to antimitotic drugs, and encourage a revision in the current model describing fate after mitotic arrest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available