4.5 Article

Evaluation of solid electrolyte cells with a versatile electrochemical technique

Journal

IONICS
Volume 19, Issue 2, Pages 265-275

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11581-012-0749-1

Keywords

Fuel cell; Current interruption; Electrochemical techniques; Impedance spectroscopy; Electrode kinetics; Solid electrolyte

Ask authors/readers for more resources

Voltage losses in fuel cells and other solid electrolyte systems are due to several mass transport and kinetics processes at the electrode/electrolyte interface as well as to ohmic contributions from the electrolyte, electrodes, current collectors and contact resistances. Electrochemical impedance spectroscopy (EIS) has been in use for several decades in fuel cell research and is quite effective in determining the contribution of individual electrode and electrolyte processes. However, data acquisition and analysis can be time-consuming and the technique has many limitations whilst cell performance and operating conditions are varying rapidly with time especially when the cells are under current load. The galvanostatic current interruption (GCI) technique is fast and can be used under a wide range of operating as well as for rapidly varying loads and cell performance conditions. In this paper a totally new and very simple way of adapting commercially available equipment has been described to perform high quality, reliable and fast GCI measurements over a range of different currents in one sequence without having to use an electronic switch or a solid state relay or a separate fast data logging system. Its versatility has been demonstrated with a number of standard RC circuits simulating slow electrode and fast electrolyte processes and by evaluating a number of solid oxide fuel cell materials. The GCI technique has been shown to be able to determine the composition of all standard test circuits within +/- 1 % of those determined from the EIS technique and actual values of circuit components. The technique has been applied to investigating solid electrolyte cells and produced excellent results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available