4.8 Article

High-Temperature Silicon-on-Insulator Gate Driver for SiC-FET Power Modules

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 27, Issue 11, Pages 4417-4424

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2011.2182213

Keywords

Gate driver; high temperature electronics; silicon carbide (SiC); silicon-on-insulator (SOI)

Funding

  1. Directorate For Engineering
  2. Div Of Industrial Innovation & Partnersh [0934390] Funding Source: National Science Foundation

Ask authors/readers for more resources

Silicon Carbide (SiC) power semiconductors have shown the capability of greatly outperforming Si-based power devices. Faster switching and smaller on-state losses coupled with higher voltage blocking and temperature capabilities make SiC an attractive semiconductor for high-performance, high-power-density power modules. However, the temperature capabilities and increased power density are fully realized only when the gate driver needed to control the SiC devices is placed next to them. This requires the gate driver to successfully operate under extreme conditions with reduced or no heat sinking requirements. In addition, since SiC devices are usually connected in a half-or full-bridge configuration, the gate driver should provide electrical isolation between the high-and low-voltage sections of the driver itself. This paper presents a 225 degrees C operable, silicon-on-insulator (SOI) high-voltage isolated gate driver IC for SiC devices. The IC was designed and fabricated in a 1 mu m, partially depleted, CMOS process. The presented gate driver consists of a primary and a secondary side which are electrically isolated by the use of a transformer. The gate driver IC has been tested at a switching frequency of 200 kHz at 225 degrees C while exhibiting a dv/dt noise immunity of at least 45 kV/mu s.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available