4.7 Article

Superelastic cellular NiTi tube-based materials: Fabrication, experiments and modeling

Journal

MATERIALS & DESIGN
Volume 65, Issue -, Pages 212-220

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2014.09.007

Keywords

NiTi shape memory alloy; NiTi tubes; Resistance welding; Architectured material

Funding

  1. French ANR research program ANiM: Architectured NiTi Material [N.2010 BLAN 90201]

Ask authors/readers for more resources

The aim of this paper is to present an experimental and modeling study as the first step towards designing and optimizing architectured materials constituted of NiTi tubes. The idea is to combine the intrinsic and novel properties of nickel-titanium shape memory alloys with purposely engineered topologies. By joining thin-wall superelastic tubes via electrical resistance welding, we create regular cellular material demonstrators. The superelastic behavior of two simple architectured materials based on identical tubes, but with two topologies, are experimentally characterized and modeled using finite element approaches. The predicted behaviors are compared by simulating complex loading, exploring the influence of the constitutive material behavior on the effective mechanical properties of cellular materials. The parameters of the constitutive equations are identified on tensile tests performed on small dog-bone shaped specimens, machined from the tubes by spark cutting. The modeling results are finally compared with compression tests performed on these simple architectured NiTi materials. As a further validation of the proposed study, two large cell structures (square and hexagonal stacking) were modeled to gain greater insight into the role of different architectures. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available