4.8 Article Proceedings Paper

A Bipedal Locomotion Planning Based on Virtual Linear Inverted Pendulum Mode

Journal

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volume 56, Issue 1, Pages 54-61

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2008.2004663

Keywords

Biped robot; humanoid robot; legged locomotion; motion control; walking motion

Ask authors/readers for more resources

In this paper, a bipedal locomotion planning based on virtual linear inverted pendulum mode (VLIPM) is proposed. In conventional methods, the desired center of gravity (COG) position and velocity are achieved by modifying the foot placement. In this research, the desired COG position and velocity are achieved while the desired foot placement is also realized. In the proposed method, the virtual modified foot placement and trajectory planning are calculated separately. VLIPM is applied to the calculation of the virtual modified foot placement. By using virtual supporting point (VSP), the difference between the virtual modified and desired foot placements is compensated. In the result, the desired foot placement is achieved as if the foot placement is in the virtual modified foot placement. Trajectory planning is applied to LIPM with VSP and 5-D polynomial. The boundary conditions of the polynomial are set to the desired COG position and velocity. In the result, the desired COG position and velocity are also obtained. Differences of the motion by different models are compensated by matching the boundary conditions of different models. By applying different models in the calculations of the foot placement and trajectory planning, the desired robot motion is realized. The walking stability of the proposed method is equivalent to that of the conventional method. The effectiveness of the proposed method is confirmed by a simulation and an experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available