4.6 Article

Creation and Characterization of an Ultrasound and CT Phantom for Noninvasive Ultrasound Thermometry Calibration

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 61, Issue 2, Pages 502-512

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2013.2282775

Keywords

Computed tomography; thermal strain; thermometry; tissue-mimicking phantom; ultrasound

Funding

  1. NIH [R01CA134659, R01CA103828]

Ask authors/readers for more resources

Ultrasound thermometry provides noninvasive 2-D temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0%, 10%, 20%, 30%, 40%, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1-41.1 degrees C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. Two-dimensional speckle tracking was used to calculate the thermal strain offline. The tissue-dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by the validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0%-10% and 20%-50% trioleate phantoms. The inverse of the tissue-dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R-2 = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5%-35% demonstrated the capability to estimate the tissue-dependent thermal strain parameter and estimate temperature with error less than similar to 1 degrees C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available