4.6 Article

High-Frequency Electrical Stimulation of Cardiac Cells and Application to Artifact Reduction

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 59, Issue 5, Pages 1381-1390

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2012.2188136

Keywords

Artifact reduction; cardiomyocyte; electrical stimulation; electrophysiology; HL-1; microelectrode array (MEA)

Funding

  1. Medtronic, Inc.

Ask authors/readers for more resources

A novel modality for the electrical stimulation of cardiac cells is described. The technique is based on HF stimulation-burst of HF (1-25 kHz) biphasic square waves-to depolarize the cells and trigger action potentials (APs). HF stimulation was demonstrated in HL-1 cardiomyocyte cultures using microelectrode arrays, and the underlying mechanisms were investigated using single-cell model simulations. Current thresholds for HF stimulation increased at higher frequencies or shorter burst durations, and were typically higher than thresholds for single biphasic pulses. Nonetheless, owing to the decreasing impedance of metal electrodes with increasing frequencies, HF bursts resulted in reduced electrode voltages (up to four fold). Such lowered potentials might be beneficial in reducing the probability of irreversible electrochemical reactions and tissue damage, especially for long-term stimulation. More significantly, stimulation at frequencies higher than the upper limit of the AP power spectrum allows effective artifact reduction by low-pass filtering. Shaping of the burst envelope provides further reduction of the remaining artifact. This ability to decouple extracellular stimulation and recording in the frequency domain allowed detection of APs during stimulation-something previously not achievable to the best of our knowledge.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available