4.6 Article

Reconstructing Directed Signed Gene Regulatory Network From Microarray Data

Journal

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
Volume 58, Issue 12, Pages 3518-3521

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2011.2163188

Keywords

Bioinformatics; biological system modeling

Ask authors/readers for more resources

Great efforts have been made to develop both algorithms that reconstruct gene regulatory networks and systems that simulate gene networks and expression data, for the purpose of benchmarking network reconstruction algorithms. An interesting observation is that although many simulation systems chose to use Hill kinetics to generate data, none of the reconstruction algorithms were developed based on the Hill kinetics. One possible explanation is that, in Hill kinetics, activation and inhibition interactions take different mathematical forms, which brings additional combinatorial complexity into the reconstruction problem. We propose a new model that qualitatively behaves similar to the Hill kinetics, but has the same mathematical form for both activation and inhibition. We developed an algorithm to reconstruct gene networks based on this new model. Simulation results suggested a novel biological hypothesis that in gene knockout experiments, repressing protein synthesis to a certain extent may lead to better expression data and higher network reconstruction accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available