4.6 Article

Micromechanical Cohesion Force between Gas Hydrate Particles Measured under High Pressure and Low Temperature Conditions

Journal

LANGMUIR
Volume 31, Issue 13, Pages 3884-3888

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.5b00361

Keywords

-

Funding

  1. CSM (Colorado School of Mines) Hydrate Consortium

Ask authors/readers for more resources

To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available