4.3 Article

IDENTIFICATION AND QUANTITATION OF BIOMARKERS FOR RADIATION-INDUCED INJURY VIA MASS SPECTROMETRY

Journal

HEALTH PHYSICS
Volume 106, Issue 1, Pages 106-119

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/HP.0b013e3182a4ed3b

Keywords

bioassay; gastrointestinal tract; laboratory animals; nutrition pathways

Funding

  1. Federal funds from the National Institute of Allergy and Infectious Diseases [HHSN272201000046C]

Ask authors/readers for more resources

Biomarker identification and validation for radiation exposure is a rapidly expanding field encompassing the need for well defined animal models and advanced analytical techniques. The resources within the consortium, Medical Countermeasures Against Radiological Threats (MCART), provide a unique opportunity for accessing well defined animal models that simulate the key sequelae of the acute radiation syndrome and the delayed effects of acute radiation exposure. Likewise, the use of mass spectrometry-based analytical techniques for biomarker discovery and validation enables a robust analytical platform that is amenable to a variety of sample matrices and considered the benchmark for biomolecular identification and quantitation. Herein, the authors demonstrate the use of two targeted mass spectrometry approaches to link established MCART animal models to identified metabolite biomarkers. Circulating citrulline concentration was correlated to gross histological gastrointestinal tissue damage, and retinoic acid production in lung tissue was established to be reduced at early and late time points post high dose irradiation. Going forward, the use of mass spectrometry-based metabolomics coupled to well defined animal models provides the unique opportunity for comprehensive biomarker discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available