4.8 Article

Rapid warming is associated with population decline among terrestrial birds and mammals globally

Journal

GLOBAL CHANGE BIOLOGY
Volume 24, Issue 10, Pages 4521-4531

Publisher

WILEY
DOI: 10.1111/gcb.14361

Keywords

biodiversity; climate change; climate warming; extinction risk; global change; land use change; macroecology; population declines

Funding

  1. Natural Environment Research Council

Ask authors/readers for more resources

Animal populations have undergone substantial declines in recent decades. These declines have occurred alongside rapid, human-driven environmental change, including climate warming. An association between population declines and environmental change is well established, yet there has been relatively little analysis of the importance of the rates of climate warming and its interaction with conversion to anthropogenic land use in causing population declines. Here we present a global assessment of the impact of rapid climate warming and anthropogenic land use conversion on 987 populations of 481 species of terrestrial birds and mammals since 1950. We collated spatially referenced population trends of at least 5years' duration from the Living Planet database and used mixed effects models to assess the association of these trends with observed rates of climate warming, rates of conversion to anthropogenic land use, body mass, and protected area coverage. We found that declines in population abundance for both birds and mammals are greater in areas where mean temperature has increased more rapidly, and that this effect is more pronounced for birds. However, we do not find a strong effect of conversion to anthropogenic land use, body mass, or protected area coverage. Our results identify a link between rapid warming and population declines, thus supporting the notion that rapid climate warming is a global threat to biodiversity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available