4.7 Article

Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 37, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GL044544

Keywords

-

Funding

  1. Swedish Research Council
  2. Swedish National Space Board (SNSB)
  3. ISSI
  4. STFC [PP/E001076/1, ST/I00212X/1, ST/H002383/1] Funding Source: UKRI
  5. Science and Technology Facilities Council [ST/I00212X/1, ST/H002383/1, PP/E001076/1] Funding Source: researchfish

Ask authors/readers for more resources

We present electron temperature and density measurements of Titan's cold ionospheric plasma from the Langmuir probe instrument on Cassini from 52 flybys. An expression of the density as a function of temperature is presented for altitudes below two Titan radii. The density falls off exponentially with increased temperature as log(n(e)) = -2.0log(T-e) + 0.6 on average around Titan. We show that this relation varies with location around Titan as well as with the solar illumination direction. Significant heating of the electrons appears to take place on the night/wake side of Titan as the density-temperature relation is less steep there. Furthermore, we show that the magnetospheric ram pressure is not balanced by the thermal and magnetic pressure in the topside ionosphere and discuss its implications for plasma escape. The cold ionospheric plasma of Titan extends to higher altitudes in the wake region, indicating the loss of atmosphere down the induced magnetospheric tail. Citation: Edberg, N. J. T., J.-E. Wahlund, K. Agren, M. W. Morooka, R. Modolo, C. Bertucci, and M. K. Dougherty (2010), Electron density and temperature measurements in the cold plasma environment of Titan: Implications for atmospheric escape, Geophys. Res. Lett., 37, L20105, doi:10.1029/2010GL044544.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available