4.7 Article

Topography growth drives stress rotations in the central Andes: Observations and models

Journal

GEOPHYSICAL RESEARCH LETTERS
Volume 35, Issue 8, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007GL032782

Keywords

-

Ask authors/readers for more resources

Recent numerical models that couple global mantel circulation with lithosphere dynamics show that growth of the central Andes controls the 30% reduction of convergence velocity between the Nazca and South America plates observed over the past 10 Ma. The increase of gravitational potential energy due to topographic growth is also a major control on the stress pattern. Here we use numerical models which reproduce the Nazca/South America convergence history to predict the change of stress pattern in the central Andes for the past 10 Ma. Comparison of the modeled stress orientations at present-day with the observed ones results in +/- 23.9 degrees mean deviation. Based on this good agreement we attempt to predict paleostress orientations 10 Ma ago. Interestingly, the modeled stress orientations 3.2 Ma ago are very similar to the present-day orientations. From this result we infer that stress rotations occurred between 10 and 3.2 Ma ago, when topography was considerably lower.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available