4.7 Article

Soil organic carbon assessment by field and airborne spectrometry in bare croplands: accounting for soil surface roughness

Journal

GEODERMA
Volume 226, Issue -, Pages 94-102

Publisher

ELSEVIER
DOI: 10.1016/j.geoderma.2014.02.015

Keywords

Soil spectroscopy; Soil organic carbon; Soil roughness; Soil shadow; Image segmentation

Categories

Funding

  1. Belgian Science Policy Office
  2. National Research Fund of Luxembourg [SR/00/110]
  3. CARBIS project [SR/00/71]

Ask authors/readers for more resources

Visible, Near and Short Wave Infrared (VNSWIR) diffuse reflectance spectroscopy (350 nm to 2500 nm) has been proven to be an efficient tool to determine the Soil Organic Carbon (SOC) content. SOC assessment (SOCa) is usually done by using calibration samples and multivariate models. However one of the major constraints of this technique, when used in field conditions is the spatial variation in surface soil properties (soil water content, roughness, vegetation residue) which induces a spectral variability not directly related to SOC and hence reduces the SOCa accuracy. This study focuses on the impact of soil roughness on SOCa by outdoor VIS-NIR-SWIR spectroscopy and is based on the assumption that soil roughness effect can be approximated by its related shadowing effect. A new method for identifying and correcting the effect of soil shadow on reflectance spectra measured with an Analytical Spectral Devices (ASD) spectroradiometer and an Airborne Hyperspectral Sensor (AHS-160) on freshly tilled fields in the Grand Duchy of Luxembourg was elaborated and tested. This method is based on the shooting of soil vertical photographs in the visible spectrum and the derivation of a shadow correction factor resulting from the comparison of reflectance of shadowed and illuminated soil areas. Moreover, the study of laboratory ASD reflectance of shadowed soil samples showed that the influence of shadow on reflectance varies according to wavelength. Consequently a correction factor in the entire [350-2500 nm] spectral range was computed to translate this differential influence. Our results showed that SOCa was improved by 27% for field spectral data and by 25% for airborne spectral data by correcting the effect of soil relative shadow. However, compared to simple mathematical treatment of the spectra (first derivative, etc.) able to remove variation in soil albedo due to roughness, the proposed method, leads only to slightly more accurate SOCa. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available