4.7 Article

Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 131, Issue -, Pages 150-163

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2014.01.020

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)
  2. Japan Society for the Promotion of Science (JSPS KAKENHI) [23840058]
  3. Japan Science Society
  4. Grants-in-Aid for Scientific Research [23710008, 23840058, 25550013, 22224011] Funding Source: KAKEN

Ask authors/readers for more resources

Tellurium, an element of growing economic importance, is extremely enriched in marine ferromanganese oxides. We investigated the mechanism of this enrichment using a combination of spectroscopic analysis and adsorption/coprecipitation experiments. X-ray Absorption Near-Edge Structure (XANES) analysis showed that in adsorption/coprecipitation systems, Te(IV) was oxidized on delta-MnO2 and not oxidized on ferrihydrite. Extended X-ray Absorption Fine Structure (EXAFS) analysis showed that both Te(IV) and Te(VI) were adsorbed on the surface of delta-MnO2 and ferrihydrite via formation of inner-sphere complexes. In addition, Te(VI) can be structurally incorporated into the linkage of Fe octahedra through a coprecipitation process because of its molecular geometry that is similar to the Fe octahedron. The largest distribution coefficient obtained in the adsorption/coprecipitation experiments was for the Te(VI)/ferrihydrite coprecipitation system, and it was comparable to those calculated from the distribution between natural ferromanganese oxides and seawater. Our XAFS and micro-focused X-ray fluorescence (mu-XRF) mapping of natural ferromanganese oxides showed that Te was structurally incorporated as Te(VI) in Fe (oxyhydr)oxide phases. We conclude that the main process for the enrichment of Te in ferromanganese oxides is structural incorporation of Te(VI) into Fe (oxyhydr) oxide phases through coprecipitation. This mechanism can explain the unique degree of enrichment of Te compared with other oxyanions, which are mainly enriched via adsorption on the surface of the solid structures. In particular, the great contrast in the distributions of Te and Se is caused by their oxidized species: (i) the similar geometry of the Te(VI) molecule to Fe octahedron, and (ii) quite soluble nature of Se(VI). Coexisting Mn oxide phases may promote structural incorporation of Te(VI) by oxidation of Te(IV), although the surface oxidation itself may not work as the critical enrichment process as in the case of some cations. This enrichment mechanism also means that ferromanganese oxides mainly scavenge dominant Te(VI) species from seawater and do not affect its species distribution in seawater, as described in a previous model. The variation in Te abundances and the correlation of Te concentration with the growth rate of natural ferromanganese oxides are consistent with the coprecipitation mechanism. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available