4.7 Article

Reduction of selenite by cysteine in ionic media

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 124, Issue -, Pages 98-108

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2013.09.019

Keywords

-

Funding

  1. Division Of Ocean Sciences
  2. Directorate For Geosciences [0752972] Funding Source: National Science Foundation

Ask authors/readers for more resources

This paper focuses on the abiotic reduction of selenite (Se(IV)) by cysteine (Cys, NH3+CH(CH2SH) COOH), which is a representative thiol produced by aquatic organism under oxidative stress. The rates of reduction of Se(IV) by cysteine were measured in deaerated NaCl solutions and natural waters as a function of pH (4.0-9.0), temperature (10-40 degrees C), and ionic strength (0.01-1.0 M). The rates showed a complex dependence on pH with similar values from pH 4.0-5.0, increasing values from pH 5.0-7.0 and then decreasing values at pH higher than 7.0. An apparent energy of activation obtained was 31 +/- 6 kJ mol(-1), which was independent of ionic strength. The reaction is due to the following interaction HSeO3- + H(2)Cys(0) k(ST)reversible arrow k(-ST)[ST] k(Se(0))-> Products where the selenotrisulfide [ST] is the complex intermediate RS-Se-SR with R = NH3+CH(CH2)COO-. The intermediate ST then decomposes in the final products Se(0) and cystine. The pseudo-first-order rate constant is written as k(1) = k(ST) x (1 - k(-ST)/k(-ST) + k(Se)(0)) x alpha(HSeO3) x alpha(H2Cys0) x [Cys](T) where the second-order rate constant (k(ST)) was calculated as (2.0 +/- 0.2) x 10(3) M-1 min(-1) and was compared with the second-order rate constants of other reductants (hydrogen sulfide, ascorbic acid). In neutrality and alkaline solution, [ST] undergoes rapid decomposition and the term (1 - k(-ST)/k(-ST) + k(Se(0))) approximates 1 and may be neglected. k(1) = k(ST) x alpha(-)(HSeO3) x alpha(H2Cys0) x [Cys](T) Environmental significance of the results and the importance of abiotic vs biotic reactions are also briefly discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Environmental Sciences

Abiotic transformation of polycyclic aromatic hydrocarbons via interaction with soil components: A systematic review

Jinbo Liu, Chi Zhang, Hanzhong Jia, Eric Lichtfouse, Virender K. Sharma

Summary: This paper reviews the dissipation of PAHs in soils through abiotic processes such as photodegradation and oxidation. It discusses the role of soil components in degradation rates, pathways, and mechanisms, as well as the potential risks of abiotic transformations.

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Overlooked involvement of phosphate radicals in the degradation of the atrazine herbicide by sulfate radical-based advanced oxidation

Yinghao Wen, Eric Lichtfouse, Virender K. Sharma, Xingmao Ma

Summary: The persistence of recalcitrant pollutants in water is a major health issue. This study investigated the effect of phosphate on the degradation of atrazine by peroxydisulfate under visible light. The presence of phosphates was found to significantly decrease the efficiency of atrazine removal, due to the formation of less reactive phosphate radicals.

ENVIRONMENTAL CHEMISTRY LETTERS (2023)

Article Chemistry, Physical

Overlooked self-catalytic mechanism in phenolic moiety-mediated Fenton-like system: Formation of Fe(III) hydroperoxide complex and co-treatment of refractory pollutants

Cheng Chen, Yongyi Wang, Yajing Huang, Jian Hua, Wei Qu, Dehua Xia, Chun He, Virender K. Sharma, Dong Shu

Summary: This study found that pollutants containing phenolic moiety can greatly enhance the efficiency of the Fe(III)/H2O2 system without catalyst in degrading pollutants. Kinetics analysis revealed the self-catalytic degradation of the pollutants, with the best performance observed at pH 4.0. Spectroscopic measurements and theoretical calculations revealed a previously overlooked self-catalytic mechanism involving the formation of a yellow-colored high-spin P-Fe(III)-OOH complex, which subsequently converts to Fe(II). The oxidation of phenolic moiety generates hydroquinone, which also facilitates the cycling of Fe(III)/Fe(II) and the generation of hydroxyl radicals responsible for efficient decontamination.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Biochemistry & Molecular Biology

Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin

Adam Tolgyesi, Attila Cseh, Andrea Simon, Virender K. Sharma

Summary: The study aimed to develop a method for analyzing multiple groups of food contaminants, including 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The method used QuEChERS sample preparation and LC-MS/MS analysis under alkaline mobile phase conditions. The developed method has been successfully validated through satisfactory analyses of various quality control, proficiency test, and validation samples.

MOLECULES (2023)

Review Chemistry, Physical

Phosphorous- and Boron-Doped Graphene-Based Nanomaterials for Energy-Related Applications

Manpreet Kaur Ubhi, Manpreet Kaur, Jaspreet Kaur Grewal, Virender K. Sharma

Summary: This article reviews the different synthesis routes of phosphorous- and boron-doped graphene and their applications in supercapacitors, lithium-ion batteries, and electronic devices such as fuel and solar cells. The direct and post-treatment methods are discussed, with the latter offering a more stable and controllable technique that preserves the original graphene structure. The review also highlights the latest progress in using phosphorous and boron-doped graphene for energy-related applications.

MATERIALS (2023)

Article Engineering, Environmental

Reaction of FeaqII with Peroxymonosulfate and Peroxydisulfate in the Presence of Bicarbonate: Formation of FeaqIV and Carbonate Radical Anions

Aswin Kottapurath Vijay, Vered Marks, Amir Mizrahi, Yinghao Wen, Xingmao Ma, Virender K. Sharma, Dan Meyerstein

Summary: This study investigated the kinetics and mechanisms of the reactions between Feaq II and PMS or PDS at different pH values, as well as the influence of bicarbonate (HCO3-). The results showed that FeaqIV was the dominant oxidizing species in the absence of HCO3-. In the presence of environmentally relevant concentrations of HCO3-, carbonate radical anion (CO3 center dot-) became the dominant reactive species. These findings provide insights for advancing persulfate-based advanced oxidation processes (AOPs) in oxidizing pollutants in natural water.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Picolinic Acid-Mediated Catalysis of Mn(II) for Peracetic Acid Oxidation Processes: Formation of High-Valent Mn Species

Juhee Kim, Junyue Wang, Daniel C. Ashley, Virender K. Sharma, Ching-Hua Huang

Summary: This study discovers that the biodegradable chelating ligand picolinic acid (PICA) can effectively mediate the activation of peracetic acid (PAA) by manganese (II), leading to accelerated degradation of micropollutants. The PAA-Mn(II)-PICA system is capable of rapidly removing various micropollutants in clean and wastewater matrices. High-valent manganese species (Mn(V)) is identified as the main reactive species contributing to the rapid degradation of micropollutants.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

57Fe Mossbauer Spectrometry to explore natural and artificial nanostructures

Virender K. Sharma, Zoltan Homonnay, Tetsuaki Nishida, Jean-Marc Greneche

Summary: Since its discovery in the mid-twentieth century, Fe-57 Mossbauer spectrometry has been widely applied in various scientific fields, offering a local probe technique with high atomic scale sensitivity and low cost facilities. This article introduces the application of Mossbauer spectrometry in studying laboratory-made and natural materials, demonstrating its significant contribution in understanding synthesis mechanisms and chemical/physical properties.

JOURNAL OF MATERIALS RESEARCH (2023)

Article Chemistry, Physical

Oxidation of Pharmaceuticals by Ferrate(VI)-Amino Acid Systems: Enhancement by Proline

Virender K. Sharma, Junyue Wang, Mingbao Feng, Ching-Hua Huang

Summary: The occurrence of micropollutants in water poses a threat to public health and the environment. The addition of certain amino acids can enhance the removal efficiency of these micropollutants by ferrate(VI).

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Article Engineering, Environmental

Insights into manganese(VII) enhanced oxidation of benzophenone-8 by ferrate(VI): Mechanism and transformation products

Mingzhu Liu, Nannan Wu, Xiaoyu Li, ShengNan Zhang, Virender K. Sharma, Jamaan S. Ajarem, Ahmed A. Allam, Ruijuan Qu

Summary: This study investigated the oxidation reaction of benzophenones, commonly used UV filters, by the oxidant potassium permanganate (KMnO4). The addition of potassium permanganate enhanced the reaction rate and efficiency. The degradation of benzophenones involved hydroxylation, bond breaking, polymerization, and carboxylation processes. Toxicity assessments revealed that the intermediate products formed during the degradation process posed a decreasing ecological risk.

WATER RESEARCH (2023)

Article Engineering, Environmental

Ferrate(VI) mediated degradation of the potent cyanotoxin, cylindrospermopsin: Kinetics, products, and toxicity

Cen Zhao, Luis E. Arroyo-Mora, Anthony P. DeCaprio, Dionysios D. Dionysiou, Kevin E. O. 'Shea, Virender K. Sharma

Summary: The study demonstrates the effective degradation of the cyanotoxin CYN and its model compound 6-HOMU using ferrate(VI) oxidation. The uracil ring of CYN is oxidized and cleaved, leading to the generation of nontoxic cylindrospermopsic acid. This method shows promise for the treatment of CYN and uracil-based toxins in drinking water.

WATER RESEARCH (2023)

Review Chemistry, Multidisciplinary

Ruthenium-driven catalysis for sustainable water decontamination: a review

Shengqi Zhang, Kaiting Zhang, Yuwei Xie, Yao-Yin Lou, Eric Lichtfouse, Mingbao Feng, Virender K. Sharma

Summary: The demand for clean water is increasing worldwide, but wastewater decontamination is limited by refractory organic and inorganic compounds, requiring more efficient treatment methods. This review discusses the use of ruthenium-based catalysts for polluant removal or transformation at a concentration range of 1.0-100 mg/L under acid or neutral conditions. Various catalytic oxidation and reduction methods, as well as the environmental impact of ruthenium catalysts, are examined, including electrooxidation, photocatalytic oxidation, activation of inert oxidants, hydrogen-assisted reduction, electroreduction, and N-O bond activation.

ENVIRONMENTAL CHEMISTRY LETTERS (2023)

Review Engineering, Chemical

Electrochemical degradation of per- and poly-fluoroalkyl substances in the presence of natural organic matter

Poulami Mukherjee, Krishnamoorthy Sathiyan, Tomer Zidki, Mallikarjuna N. Nadagouda, Virender K. Sharma

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Chemistry, Analytical

Graphene-based gel electromembrane extraction coupled with modified screen-printed carbon electrode for detecting streptomycin in honey samples: Greener strategy for food analysis

Untika Pengsomjit, Waleed Alahmad, Pakorn Varanusupakul, Sibel A. Ozkan, Virender K. Sharma, Charoenkwan Kraiya

Summary: This paper presents a greener methodology for determining streptomycin in honey using gel electromembrane extraction (G-EME) technique with exfoliated graphene (EG). The addition of EG enhances the extraction efficiency and sensitivity. The problem of increased electric current and electroendosmosis due to graphene-based nanomaterials is solved by tuning the acceptor phase's volume.

TALANTA (2024)

Review Chemistry, Multidisciplinary

Single atom catalyst-mediated generation of reactive species in water treatment

Virender K. Sharma, Xingmao Ma, Radek Zboril

Summary: Water is a crucial component of the United Nations' sustainable development goals, and water reuse is becoming increasingly accepted in response to global water scarcity. However, traditional treatment processes face challenges in treating low concentrations of pollutants in the presence of other chemicals. Advanced oxidation processes and the use of single atom catalysts offer promising solutions to these challenges.

CHEMICAL SOCIETY REVIEWS (2023)

Article Geochemistry & Geophysics

Uranium isotopes in non-euxinic shale and carbonate reveal dynamic Katian marine redox conditions accompanying a decrease in biodiversity prior to the Late Ordovician Mass Extinction

Xinze Lu, Geoffrey J. Gilleaudeau, Brian Kendall

Summary: The Late Ordovician mass extinction is the first major extinction event in the Phanerozoic, but the reasons for the decline in global biodiversity before the extinction are not well understood.

GEOCHIMICA ET COSMOCHIMICA ACTA (2024)

Article Geochemistry & Geophysics

Trace element evidence for diverse origins of superheavy pyrite in Neoproterozoic sedimentary strata

Junyao Kang, Daniel D. Gregory, Benjamin Gill, Shiqiang Huang, Changxin Lai, Zhaoshan Chang, Huan Cui, Ivan Belousov, Shuhai Xiao

Summary: Sedimentary pyrite is an important geological archive, but it can be altered by diagenetic and hydrothermal processes. This study successfully trained machine learning algorithms to distinguish pyrite origins using trace element data. The approach was validated and applied to identify the origins of pyrite in two sedimentary successions in South China.

GEOCHIMICA ET COSMOCHIMICA ACTA (2024)