4.5 Article

Paleomagnetic field properties at high southern latitude

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 10, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2008GC002072

Keywords

Antarctica; paleointensity; tangent cylinder; paleomagnetism; 40Ar/39Ar

Funding

  1. NSF [0538392, 0229403]
  2. Directorate For Geosciences
  3. Office of Polar Programs (OPP) [0538392, 0229403] Funding Source: National Science Foundation

Ask authors/readers for more resources

Statistical analyses of paleomagnetic data from lava flows are used to study geomagnetic field behavior on million year timescales. Previous paleomagnetic studies have lacked high-latitude measurements necessary to investigate the persistence of geomagnetic anomalies observed in the recent and historical field and replicated in some numerical geodynamo simulations. These simulations suggest that reduced convective flow inside the tangent cylinder may affect the magnetic field at high latitude, whereas lower-latitude observations are expressions of columnar/helical flow outside the tangent cylinder. This paper presents new paleointensity and paleodirectional data from 100 volcanic sites in the Erebus Volcanic Province (EVP), Antarctica, and 21 new age determinations by the 40Ar/39Ar incremental heating method. The new EVP data are combined with previously published paleomagnetic and geochronological results, providing 133 sites, 91 having radioisotopic dates. Modified Thellier-Thellier paleointensity estimates are reported for 47 sites (37 have dates). Ages for the combined data set span 0.03 to 13.42 Ma. The 125 high-quality EVP directional data selected from the merged data set have a non-Fisherian distribution and a mean direction with an inclination anomaly of similar to 3 degrees, but 95% confidence limits include the prediction from a geocentric axial dipole. Virtual geomagnetic pole (VGP) dispersions for Brunhes, Matuyama, and the combined 0-5 Ma data set are consistently high compared with values from middle-to low-latitude regions regardless of the criterion used to determine transitional fields. With VGP latitude cut off at 45 degrees, the dispersion (23.9 +/-2.1 degrees) for the combined 0-5 Ma EVP data set is consistent with earlier high-latitude data and paleosecular variation (PSV) in Model G but not with some more recent statistical PSV models. Mean EVP paleointensity of 31.5 +/-2.4 mu T, derived from 41 high-quality sites, is about half the current value at McMurdo (similar to 63 mu T). The result is essentially independent of data selection criteria. High VGP dispersion and low-intensity values support the global observation of anticorrelation between directional variability and field strength. Simulations of time-varying dipole strength show that uneven temporal sampling may bias the mean EVP intensity estimate, but the possibility of persistently anomalous field behavior at high latitude cannot be excluded.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available