4.4 Article

Low temperature S0 biomineralization at a supraglacial spring system in the Canadian High Arctic

Journal

GEOBIOLOGY
Volume 9, Issue 4, Pages 360-375

Publisher

WILEY
DOI: 10.1111/j.1472-4669.2011.00283.x

Keywords

-

Funding

  1. Canadian Polar Continental Shelf Project
  2. Planetary Society
  3. Lewis and Clark Field Scholarship
  4. NASA Astrobiology Institute
  5. David and Lucille Packard Foundation

Ask authors/readers for more resources

Elemental sulfur (S-0) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H2S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by beta-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and epsilon-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S-0 in opposing gradients of Na2S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S-0 alone when reintroduced to Na2S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available