4.2 Article

Model selection for quantitative trait loci mapping in a full-sib family

Journal

GENETICS AND MOLECULAR BIOLOGY
Volume 35, Issue 3, Pages 622-+

Publisher

SOC BRASIL GENETICA
DOI: 10.1590/S1415-47572012005000044

Keywords

full-sib family; interval mapping; model selection; quantitative trait locus

Funding

  1. Priority Academic Program Development (PAPD) of the Jiangsu Higher Education Institutions
  2. National Natural Science Foundation of China [30872051]

Ask authors/readers for more resources

Statistical methods for mapping quantitative trait loci (QTLs) in full-sib forest trees, in which the number of alleles and linkage phase can vary from locus to locus, are still not well established. Previous studies assumed that the QTL segregation pattern was fixed throughout the genome in a full-sib family, despite the fact that this pattern can vary among regions of the genome. In this paper, we propose a method for selecting the appropriate model for QTL mapping based on the segregation of different types of markers and QTLs in a full-sib family. The QTL segregation patterns were classified into three types:test cross (1:1 segregation), F-2 cross (1:2:1 segregation) and full cross (1:1:1:1 segregation). Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and the Laplace-empirical criterion (LEC) were used to select the most likely QTL segregation pattern. Simulations were used to evaluate the power of these criteria and the precision of parameter estimates. A Windows-based software was developed to run the selected QTL mapping method. A real example is presented to illustrate QTL mapping in forest trees based on an integrated linkage map with various segregation markers. The implications of this method for accurate QTL mapping in outbred species are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available