4.3 Article

Semantically-based crossover in genetic programming: application to real-valued symbolic regression

Journal

GENETIC PROGRAMMING AND EVOLVABLE MACHINES
Volume 12, Issue 2, Pages 91-119

Publisher

SPRINGER
DOI: 10.1007/s10710-010-9121-2

Keywords

Genetic programming; Semantics; Crossover; Symbolic regression locality

Funding

  1. Irish Research Council for Science Engineering and Technology (IRCSET)
  2. Vietnam National Foundation for Science and Technology Development (NAFOSTED) [102.01.14.09]

Ask authors/readers for more resources

We investigate the effects of semantically-based crossover operators in genetic programming, applied to real-valued symbolic regression problems. We propose two new relations derived from the semantic distance between subtrees, known as semantic equivalence and semantic similarity. These relations are used to guide variants of the crossover operator, resulting in two new crossover operators-semantics aware crossover (SAC) and semantic similarity-based crossover (SSC). SAC, was introduced and previously studied, is added here for the purpose of comparison and analysis. SSC extends SAC by more closely controlling the semantic distance between subtrees to which crossover may be applied. The new operators were tested on some real-valued symbolic regression problems and compared with standard crossover (SC), context aware crossover (CAC), Soft Brood Selection (SBS), and No Same Mate (NSM) selection. The experimental results show on the problems examined that, with computational effort measured by the number of function node evaluations, only SSC and SBS were significantly better than SC, and SSC was often better than SBS. Further experiments were also conducted to analyse the perfomance sensitivity to the parameter settings for SSC. This analysis leads to a conclusion that SSC is more constructive and has higher locality than SAC, NSM and SC; we believe these are the main reasons for the improved performance of SSC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available