4.4 Article

EPCAM germline and somatic rearrangements in lynch syndrome: identification of a novel 3′EPCAM deletion

Journal

GENES CHROMOSOMES & CANCER
Volume 52, Issue 9, Pages 845-854

Publisher

WILEY-BLACKWELL
DOI: 10.1002/gcc.22080

Keywords

-

Ask authors/readers for more resources

3EPCAM (Epithelial Cell Adhesion Molecule) genomic rearrangements can be a cause of mismatch repair deficiency in rare Lynch syndrome families. 3EPCAM deletions include the polyadenylation signal and might result in promoter hypermethylation of the centromeric MSH2 gene in cis. A somatic rearrangement in trans affecting MSH2 is responsible for the final mismatch repair deficiency in the corresponding tumors but the mechanisms are not well documented. In this report two germline 3EPCAM deletions are described together with the corresponding somatic mutations in the patient's colorectal tumors. Mutation and breakpoint analysis resulted in the identification of one novel (c.556-531_*872del) and one known EPCAM deletion (c.859-689_*14697del). Both deletions resulted from Alu mediated homologous recombination causing aberrant EPCAM-MSH2 fusion transcripts. The colorectal tumors of the deletion carriers were MSI-high. Strong hypermethylation of the MSH2 promoter was measured. Analysis of somatic genomic rearrangements showed a 4 Mb deletion including the EPCAM, MSH2 and MSH6 genes in one tumor and copy neutral loss of heterozygosity in the EPCAM-MSH2 region in the other tumor. This indicates that hemi- and homozygous hypermethylation of the MSH2 promoter and hence complete silencing of MSH2 expression was responsible for the mismatch repair deficiency in both colorectal tumors. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available