4.6 Article

Characterization and expression of cytoplasmic copper/zinc superoxide dismutase (CuZn SOD) gene under temperature and hydrogen peroxide (H2O2) in rotifer Brachionus calyciflorus

Journal

GENE
Volume 518, Issue 2, Pages 388-396

Publisher

ELSEVIER
DOI: 10.1016/j.gene.2012.12.101

Keywords

Copper/zinc superoxide dismutase; Hydrogen peroxide; Vitamin E; Temperature; Brachionus calyciflorus

Funding

  1. National Natural Science Foundation of China [31272388]
  2. National Natural Science Foundation of China for Talents Training in Basic Science [J1103507]

Ask authors/readers for more resources

Superoxide dismutase (SOD, EC 1.15.1.1) is an important antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). We cloned cDNA encoding SOD activated with copper/zinc (CuZn SOD) from the rotifer Brachionus calyciflorus Pallas. The full-length cDNA of CuZn SOD was 692 bp and had a 465 bp open reading frame encoding 154 amino acids. The deduced amino acid sequence of B. calyciflorus CuZn SOD showed 63.87%, 60.00%, 59.74% and 48.89% similarity with the CuZn SOD of the Ctenopharyn godonidella, Schistosoma japonicum, Drosophila melanogaster and Caenorhabditis elegans, respectively. The phylogenetic tree constructed based on the amino acid sequences of CuZn SODs from B. calyciflorus and other organisms revealed that rotifer is closely related to nematode. Analysis of the expression of CuZn SOD under different temperatures (15, 30 and 37 degrees C) revealed that its expression was enhanced 4.2-fold (p<0.001) at 30 degrees C after 2 h, however, the lower temperature (15 degrees C) promoted CuZn SOD transiently (4.1-fold, p<0.001) and then the expression of CuZn SOD decreased to normal level (p>0.05). When exposed to H2O2 (0.1 mM), CuZn SOD, manganese superoxide dismutase (Mn SOD) and catalase (CAT) gene were upregulated, and in addition, the mRNA expression of CuZn SOD gene was induced instantaneously after exposure to vitamin E. It indicates that the CuZn SOD gene would be an important gene in response to oxidative and temperature stress. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available