4.7 Article

An effective privacy preserving algorithm for neighborhood-based collaborative filtering

Publisher

ELSEVIER
DOI: 10.1016/j.future.2013.07.019

Keywords

Privacy preserving; Neighborhood-based collaborative filtering; Differential privacy

Ask authors/readers for more resources

As a popular technique in recommender systems, Collaborative Filtering (CF) has been the focus of significant attention in recent years, however, its privacy-related issues, especially for the neighborhood-based CF methods, cannot be overlooked. The aim of this study is to address these privacy issues in the context of neighborhood-based CF methods by proposing a Private Neighbor Collaborative Filtering (PNCF) algorithm. This algorithm includes two privacy preserving operations: Private Neighbor Selection and Perturbation. Using the item-based method as an example, Private Neighbor Selection is constructed on the basis of the notion of differential privacy; meaning that neighbors are privately selected for the target item according to its similarities with others. Recommendation-Aware Sensitivity and a re-designed differential privacy mechanism are introduced in this operation to enhance the performance of recommendations. A Perturbation operation then hides the true ratings of selected neighbors by adding Laplace noise. The PNCF algorithm reduces the magnitude of the noise introduced from the traditional differential privacy mechanism. Moreover, a theoretical analysis is provided to show that the proposed algorithm can resist a KNN attack while retaining the accuracy of recommendations. The results from experiments on two real datasets show that the proposed PNCF algorithm can obtain a rigid privacy guarantee without high accuracy loss. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available