4.1 Article Proceedings Paper

Performance of a full-scale ITER metal hydride storage bed in comparison with requirements

Journal

FUSION SCIENCE AND TECHNOLOGY
Volume 54, Issue 1, Pages 22-26

Publisher

TAYLOR & FRANCIS INC
DOI: 10.13182/FST08-A1757

Keywords

-

Ask authors/readers for more resources

The storage of hydrogen isotopes as metal hydride is the technique chosen for the ITER Tritium Plant Storage and Delivery System (SDS). A prototype storage bed of a full-scale has been designed, manufactured and intensively tested at the Tritium Laboratory, addressing main performance parameters specified for the ITER application. The main requirements for the hydrogen storage bed are a strict physical limitation of the tritium storage capacity (currently 70 g T-2), a high supply flow rate of hydrogen isotopes, in-situ calorimetry capabilities with an accuracy of 1 g and a fully tritium compatible design. The pressure composition isotherm of the ZrCo hydrogen system, as a reference material for ITER, is characterised by significant slope. As a result technical implementation of the ZrCo hydride bed in the SDS system requires further considerations. The paper presents the experience from the operation of ZrCo getter bed including loading/deloading operation, calorimetric loop performance, and active gas cooling of the bed for fast absorption operation. The implications of hydride material characteristics on the SDS system configuration and design are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available