4.7 Article

Understanding the polydisperse behavior of asphaltenes during precipitation

Journal

FUEL
Volume 117, Issue -, Pages 206-217

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2013.09.069

Keywords

Asphaltenes; Polydisperse; Phase behavior; PC-SAFT

Funding

  1. DeepStar
  2. R&D Oil Subcommittee of the Abu Dhabi National Oil Company

Ask authors/readers for more resources

Asphaltenes are a polydisperse fraction of the crude oil, the phase behavior of which is significantly affected by the changes in pressure, temperature and composition. The focus of this study is to model the polydisperse asphaltenes' precipitation onset condition and the amount of precipitate from solvent-diluted crude oils using the Perturbed Chain form of the Statistical Associating Fluid Theory (PC-SAFT) over a wide range of crude oil density. Heavy oil and bitumen production can involve diluting with paraffinic solvents. Different fractions of the polydisperse asphaltenes thus precipitated are predicted and when compared to the experimental data show a remarkable matching for different solvents. A comparison of monodisperse and polydisperse modeling is also performed. This work illustrates the successful application of PC-SAFT for predicting the phase behavior of polydisperse asphaltenes and in particular from heavy oil and bitumen. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Chemical

Activity Coefficients from an Equation of State: Novel Approach for Fast Phase Equilibrium Calculations

Walter G. Chapman, Wael A. Fouad

Summary: This study presents a novel theoretical approach to calculate activity coefficients, allowing for faster phase equilibrium calculations. By developing an activity coefficient model, excellent experimental data consistency is achieved in mixtures dominated by self-assembly, solvation, and dipolar interactions. The suggested method shows potential in practice for improving simulation accuracy and speed.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2021)

Article Chemistry, Physical

Block copolymer self-assembly: Melt and solution by molecular density functional theory

Shun Xi, Yiwei Zhu, Jinxin Lu, Walter G. Chapman

Summary: This paper examines the self-assembly behavior of block copolymer melts and solutions with two-dimensional density inhomogeneity using modified inhomogeneous statistical associating fluid theory (iSAFT). It proposes a real-space combinatorial screening method to map out phase diagrams and studies the effects of compressibility, solvent selectivity, and block copolymer molecular architecture on self-assembly behavior.

JOURNAL OF CHEMICAL PHYSICS (2022)

Correction Chemistry, Physical

Elucidating the 1H NMR Relaxation Mechanism in Polydisperse Polymers and Bitumen Using Measurements, MD Simulations, and Models (vol 124, pg 4222, 2020)

Philip M. Singer, Arjun Valiya Parambathu, Xinglin Wang, Dilip Asthagiri, Walter G. Chapman, George J. Hirasaki, Marc Fleury, Kalina Ranguelova

JOURNAL OF PHYSICAL CHEMISTRY B (2021)

Editorial Material Chemistry, Physical

Comment on Calculation of Solid-Fluid Interfacial Free Energy with Consideration of Solid Deformation by Molecular Dynamics

Arjun Valiya Parambathu, Thiago J. Pinheiro dos Santos, Walter G. Chapman, Dilipkumar N. Asthagiri

JOURNAL OF PHYSICAL CHEMISTRY A (2022)

Article Engineering, Chemical

Extension of Cubic-Plus-Chain Equation of State: Incorporating Short-Range Soft Repulsion for Nonassociating Mixtures

Mohammed M. Alajmi, Caleb J. Sisco, Mohammed I. L. Abutaqiya, Francisco M. Vargas, Walter G. Chapman

Summary: The cubic-plus-chain (CPC) equation of state combines the classical cubic equation of state with the chain term from statistical associating fluid theory, allowing it to model both short-chain and long-chain compounds. The model can be modified and has been successfully used to simulate the phase equilibria of various mixtures.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2022)

Article Engineering, Chemical

Phase Equilibrium of Cross-Associating Mixtures Using Association Theory-Based Equation of State

Ahsan Kamil, Wael A. Fouad, Sumnesh K. Gupta, Walter G. Chapman

Summary: In this study, the Polar PC-SAFT and UNIQUAC models were used to model the VLE and excess properties of solvating mixtures. While UNIQUAC struggled in capturing the highly nonlinear function of activity coefficient curves, Polar PC-SAFT successfully predicted the distribution of hydrogen bonds and excess properties in the systems studied.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2022)

Article Engineering, Chemical

Wertheim's Association Theory for Phase Equilibrium Modeling in Chemical Engineering Practice

Carl T. Lira, J. Richard Elliott, Sumnesh Gupta, Walter G. Chapman

Summary: Association and complex formation are important factors in nonidealities of phase equilibrium modeling. Models based on Wertheim's association theory offer advantages and can overcome limitations of current models. Infinite dilution activity coefficients provide insights into liquid phase nonidealities. A systematic procedure is needed to characterize association parameters for broader implementation of these models.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2022)

Editorial Material Engineering, Chemical

Thermophysical Properties for Chemical Industry

Sumnesh Gupta, J. Richard Elliott, Andrejs Anderko, Jacob Crosthwaite, Walter G. Chapman

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2022)

Article Engineering, Chemical

Beyond Flory-Huggins: Activity Coefficients from Perturbation Theory for Polar, Polarizable, and Associating Solvents to Polymers

Walter G. Chapman, Wael A. Fouad

Summary: This paper presents a general relationship for the excess chemical potential to develop activity coefficient models from free energy perturbation theory. The Flory-Huggins theory is explained and the accuracy of the approach when there is a volume change on mixing is discussed. The result has implications in coarse-graining strategies for mesoscale modeling. Corrections for molecular size and shape, multiple association sites, multiple polar functional groups, and polarizability are also presented. The activity coefficient model is applicable to mixtures containing polar, polarizable, and associating components, and has several advantages such as known accuracy and smooth transition to the fugacity coefficient approach when necessary.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2022)

Article Engineering, Chemical

Dualistic Role of Alcohol in Micelle Formation and Structure from iSAFT Based Density Functional Theory and COSMOplex

Jinxin Lu, Andres Gonzalez de Castilla, Simon Mueller, Shun Xi, Walter G. Chapman

Summary: Alcohols are commonly used additives in surfactant self-assembling systems and their effect on these systems is complex. They can act as cosolvents by altering solvent properties and as cosurfactants by coaggregating with surfactants. Two molecular theories, iSAFT and COSMOplex, can accurately predict the effect of different alcohols on micellar structure and critical micelle concentration.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Chemistry, Physical

Hydration Free Energies of Polypeptides from Popular Implicit Solvent Models versus All-Atom Simulation Results Based on Molecular Quasichemical Theory

Rohan S. Adhikari, Arjun Valiya Parambathu, Walter G. Chapman, Dilipkumar N. Asthagiri

Summary: Calculating the hydration free energy of macromolecules has always been a challenge, but with the development of molecular quasi-chemical theory (QCT), it is now possible to calculate it within all-atom simulations. This study compares the results obtained using QCT with predictions from implicit solvent models and reveals the importance of cooperativity in hydration. The deviations between implicit and explicit solvent results highlight the limitations of additive models.

JOURNAL OF PHYSICAL CHEMISTRY B (2022)

Article Chemistry, Physical

Effect of Nanoconfinement on NMR Relaxation of Heptane in Kerogen from Molecular Simulations and Measurements

Arjun Valiya Parambathu, Walter G. Chapman, George J. Hirasaki, Dilipkumar Asthagiri, Philip M. Singer

Summary: In this study, atomistic MD simulations were used to investigate the effects of nanoconfinement on the 1H NMR relaxation times T1 and T2 of heptane in kerogen. The results show that confinement plays an important role in reducing T1 by -3 orders of magnitude, in agreement with experimental measurements. For T2, confinement breaks spatial isotropy and gives rise to residual dipolar coupling, leading to a -5 orders of magnitude reduction compared to bulk heptane. Using the simulated T2, the surface relaxivity was calibrated to predict the pore-size distribution of organic nanopores in kerogen without additional experimental data.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Review Engineering, Chemical

Current Practices and Continuing Needs in Thermophysical Properties for the Chemical Industry

Sumnesh Gupta, J. Richard Elliott, Andrzej Anderko, Jacob Crosthwaite, Walter G. Chapman, Carl T. Lira

Summary: This paper reviews and updates the status of thermophysical property needs in the chemical industry, with reference to similar observations made 20 years ago. It draws on a series of symposia held in conjunction with the American Institute of Chemical Engineers (AIChE) national meetings and incorporates the authors' experiences and references from a recent special issue of Ind. Eng. Chem. Res. It discusses the trend towards more rigorous molecular methods and the continued use of empirical methods through sophisticated correlations. The paper also highlights gaps in experimental data, the need for estimation methods and model validation, and the identification of new needs in estimation, modeling, and measurements.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Chemistry, Physical

Effect of Nanoconfinement on NMR Relaxation of Heptane in Kerogen from Molecular Simulations and Measurements

Arjun Valiya Parambathu, Walter G. Chapman, George J. Hirasaki, Dilipkumar Asthagiri, Philip M. Singer

Summary: This study investigates the effects of nanoconfinement on the 1H NMR relaxation times (T1 and T2) of heptane in kerogen using atomistic MD simulations. The results show that confinement plays an important role in reducing T1 by three orders of magnitude, in agreement with experimental measurements of heptane dissolved in kerogen. In addition, confinement breaks spatial isotropy and gives rise to residual dipolar coupling, leading to a five orders of magnitude reduction in T2. The simulated T2 is used to calibrate the surface relaxivity and predict the pore-size distribution of the organic nanopores in kerogen.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Chemistry, Physical

Thermal and concentration effects on 1H NMR relaxation of Gd3+-aqua using MD simulations and measurements

Thiago J. Pinheiro J. dos Santos, Arjun Valiya Parambathu, Carla C. Fraenza, Casey Walsh, Steve G. Greenbaum, Walter G. Chapman, Dilip Asthagiri, Philip M. Singer

Summary: In this study, the effects of temperature and concentration on r(1) of the Gd3+-aqua complex were investigated using molecular dynamics simulations and measurements. By expanding the autocorrelation function and determining the thermal activation energies, new insights into the molecular-scale physics of r(1) were revealed.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2022)

Article Energy & Fuels

Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil

Yingna Du, Chen Huang, Wei Jiang, Qiangwei Yan, Yongfei Li, Gang Chen

Summary: In this study, anionic surfactants modified hydrotalcite was used as a flow improver for crude oil under low-temperature conditions. The modified hydrotalcite showed a significant viscosity reduction effect on crude oil. The mechanism of the modified hydrotalcite on viscosity and pour point of crude oil was explored through characterization and analysis of the modified hydrotalcite and oil samples.
Article Energy & Fuels

Effect of incorporated hybrid MIL-53(Al) and MWCNT into PES membrane for CO2/CH4 and CO2/N2 separation

Mohammad Saeid Rostami, Mohammad Mehdi Khodaei

Summary: In this study, a hybrid structure, MIL-53(Al)@MWCNT, was synthesized by combining MIL-53(Al) particles and -COOH functionalized multi-walled carbon nanotube (MWCNT). The hybrid structure was then embedded in a polyethersulfone (PES) polymer matrix to prepare a mixed matrix membrane (MMM) for CO2/CH4 and CO2/N2 separation. The addition of MWCNTs prevented MIL-53(Al) aggregation, improved membrane mechanical properties, and enhanced gas separation efficiency.
Article Energy & Fuels

Phase behaviour and physical properties of dimethyl ether (DME)/flue gas/ water/heavy oil systems under reservoir conditions

Yunlong Li, Desheng Huang, Xiaomeng Dong, Daoyong Yang

Summary: This study develops theoretical and experimental techniques to determine the phase behavior and physical properties of DME/flue gas/water/heavy oil systems. Eight constant composition expansion (CCE) tests are conducted to obtain new experimental data. A thermodynamic model is used to accurately predict saturation pressure and swelling factors, as well as the phase boundaries of N2/heavy oil systems and DME/CO2/heavy oil systems, with high accuracy.
Article Energy & Fuels

Comparison of CO2 absorption in DETA solution and [bmim]-[PF6] using thermodynamic and process modelling

Morteza Afkhamipour, Ebad Seifi, Arash Esmaeili, Mohammad Shamsi, Tohid N. Borhani

Summary: Non-conventional amines are being researched worldwide to overcome the limitations of traditional amines like MEA and MDEA. Adequate process and thermodynamic models are crucial for understanding the applicability and performance of these amines in CO2 absorption, but studies on process modeling for these amines are limited. This study used rate-based modeling and Deshmukh-Mather method to model CO2 absorption by DETA solution in a packed column, validated the model with experimental data, and conducted a sensitivity analysis of mass transfer correlations. The study also compared the CO2 absorption efficiency of DETA solution with an ionic solvent [bmim]-[PF6] and highlighted the importance of finding optimum operational parameters for maximum absorption efficiency.
Article Energy & Fuels

Interfacial tension of smart water and various crude oils

Arastoo Abdi, Mohamad Awarke, M. Reza Malayeri, Masoud Riazi

Summary: The utilization of smart water in EOR operations has gained attention, but more research is needed to understand the complex mechanisms involved. This study investigated the interfacial tension between smart water and crude oil, considering factors such as salt, pH, asphaltene type, and aged smart water. The results revealed that the hydration of ions in smart water plays a key role in its efficacy, with acidic and basic asphaltene acting as intrinsic surfactants. The pH also influenced the interfacial tension, and the aged smart water's interaction with crude oil depended on asphaltene type, salt, and salinity.
Article Energy & Fuels

Co-based metal-organic frameworks confined N-hydroxyphthalimide for enhancing aerobic desulfurization of diesel fuels

Dongao Zhu, Kun Zhu, Lixian Xu, Haiyan Huang, Jing He, Wenshuai Zhu, Huaming Li, Wei Jiang

Summary: In this study, cobalt-based metal-organic frameworks (Co-based MOFs) were used as supports and co-catalysts to confine the NHPI catalyst, solving the leaching issue. The NHPI@Co-MOF with carboxyl groups exhibited stronger acidity and facilitated the generation of active oxygen radicals O2•, resulting in enhanced catalytic activity. This research provides valuable insights into the selection of suitable organic linkers and broadens the research horizon of MOF hybrids in efficient oxidative desulfurization (ODS) applications.
Article Energy & Fuels

Influence of carbon-coated zero-valent iron-based nanoparticle concentration on continuous photosynthetic biogas upgrading

Edwin G. Hoyos, Gloria Amo-Duodu, U. Gulsum Kiral, Laura Vargas-Estrada, Raquel Lebrero, Rail Munoz

Summary: This study investigated the impact of carbon-coated zero-valent nanoparticle concentration on photosynthetic biogas upgrading. The addition of nanoparticles significantly increased microalgae productivity and enhanced nitrogen and phosphorus assimilation. The presence of nanoparticles also improved the quality of biomethane produced.
Article Energy & Fuels

Effect of aqueous phase recycling on iron evolution and environmental assessment during hydrothermal carbonization of dyeing sludge

Yao Xiao, Asma Leghari, Linfeng Liu, Fangchao Yu, Ming Gao, Lu Ding, Yu Yang, Xueli Chen, Xiaoyu Yan, Fuchen Wang

Summary: Iron is added as a flocculant in wastewater treatment and the hydrothermal carbonization (HTC) of sludge produces wastewater containing Fe. This study investigates the effect of aqueous phase (AP) recycling on hydrochar properties, iron evolution and environmental assessment during HTC of sludge. The results show that AP recycling process improves the dewatering performance of hydrochar and facilitates the recovery of Fe from the liquid phase.
Article Energy & Fuels

Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors

He Liang, Tao Wang, Zhenmin Luo, Jianliang Yu, Weizhai Yi, Fangming Cheng, Jingyu Zhao, Xingqing Yan, Jun Deng, Jihao Shi

Summary: This study investigated the influence of inhibitors (carbon dioxide, nitrogen, and heptafluoropropane) on the lower flammability limit of hydrogen and determined the critical inhibitory concentration needed for complete suppression. The impact of inhibitors on explosive characteristics was evaluated, and the inhibitory mechanism was analyzed with chemical kinetics. The results showed that with the increase of inhibitor quantity, the lower flammability limit of hydrogen also increased. The research findings can contribute to the safe utilization of hydrogen energy.
Article Energy & Fuels

Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to ?-valerolactone

Zonghui Liu, Zhongze Zhang, Yali Zhou, Ziling Wang, Mingyang Du, Zhe Wen, Bing Yan, Qingxiang Ma, Na Liu, Bing Xue

Summary: In this study, high-performance solid catalysts based on phosphotungstic acid (HPW) supported on Zr-SBA-15 were synthesized and evaluated for the one-pot conversion of furfural (FUR) to γ-valerolactone (GVL). The catalysts were characterized using various techniques, and the ratio of HPW and Zr was found to significantly affect the selectivity of GVL. The HPW/Zr-SBA-15 (2-4-15) catalyst exhibited the highest GVL yield (83%) under optimized reaction conditions, and it was determined that a balance between Bronsted acid sites (BAS) and Lewis acid sites (LAS) was crucial for achieving higher catalytic performance. The reaction parameters and catalyst stability were also investigated.
Article Energy & Fuels

Experimental study of droplet vaporization for conventional and renewable transportation fuels: Effects of physical properties and chemical composition

Michael Stoehr, Stephan Ruoff, Bastian Rauch, Wolfgang Meier, Patrick Le Clercq

Summary: As part of the global energy transition, an experimental study was conducted to understand the effects of different fuel properties on droplet vaporization for various conventional and alternative fuels. The study utilized a flow channel to measure the evolution of droplet diameters over time and distance. The results revealed the temperature-dependent effects of physical properties, such as boiling point, liquid density, and enthalpy of vaporization, and showed the complex interactions of preferential vaporization and temperature-dependent influences of physical properties for multi-component fuels.
Article Energy & Fuels

An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor

Yuan Zhuang, Ruikang Wu, Xinyan Wang, Rui Zhai, Changyong Gao

Summary: Through experimental validation and optimization of the chemical kinetic model, it was found that methanol can accelerate the oxidation reaction of ammonia, and methanol can be rapidly oxidized at high concentration. HO2 was found to generate a significant amount of OH radicals, facilitating the oxidation of methanol and ammonia. Rating: 7.5/10.
Article Energy & Fuels

Improving the biodiesel combustion and emission characteristics in the lean pre-vaporized premixed system using diethyl ether as a fuel additive

Radwan M. EL-Zohairy, Ahmed S. Attia, A. S. Huzayyin, Ahmed I. EL-Seesy

Summary: This paper presents a lab-scale experimental study on the impact of diethyl ether (DEE) as an additive to waste cooking oil biodiesel with Jet A-1 on combustion and emission features of a swirl-stabilized premixed flame. The addition of DEE to biodiesel significantly affects the flame temperature distribution and emissions. The W20D20 blend of DEE, biodiesel, and Jet A-1 shows similar flame temperature distribution to Jet A-1 and significantly reduces UHC, CO, and NOx emissions compared to Jet A-1.
Article Energy & Fuels

Condensation characteristics of ammonia vapor during supersonic separation: A novel approach to ammonia-hydrogen separation

Jiang Bian, Ziyuan Zhao, Yang Liu, Ran Cheng, Xuerui Zang, Xuewen Cao

Summary: This study presents a novel method for ammonia separation using supersonic flow and develops a mathematical model to investigate the condensation phenomenon. The results demonstrate that the L-P nucleation model accurately characterizes the nucleation process of ammonia at low temperatures. Numerical simulations also show that increasing pressure and concentration can enhance ammonia condensation efficiency.
Article Energy & Fuels

Multivariate time series prediction for CO2 concentration and flowrate of flue gas from biomass-fired power plants

Shiyuan Pan, Xiaodan Shi, Beibei Dong, Jan Skvaril, Haoran Zhang, Yongtu Liang, Hailong Li

Summary: Integrating CO2 capture with biomass-fired combined heat and power (bio-CHP) plants is a promising method for achieving negative emissions. This study develops a reliable data-driven model based on the Transformer architecture to predict the flowrate and CO2 concentration of flue gas in real time. The model validation shows high prediction accuracy, and the potential impact of meteorological parameters on model accuracy is assessed. The results demonstrate that the Transformer model outperforms other models and using near-infrared spectral data as input features improves the prediction accuracy.