4.7 Article

Small-scale storage techniques for fuel chips from short rotation forestry

Journal

FUEL
Volume 109, Issue -, Pages 687-692

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2013.03.006

Keywords

Biomass; Wood; Chips; Energy; Decay

Ask authors/readers for more resources

The experiment determined the technical and financial efficiency of five storage techniques, specifically designed for SRF poplar chips stored at the farm site in small (20 m(3)) piles. The treatments on test were: uncovered storage, storage under a temporary roof structure, cover under a semi-permeable fleece sheet, cover under two types of plastic sheet (i.e. white and black). Each treatment was replicated 3 times. Researchers monitored temperature and moisture content trends inside the piles, and determined dry matter losses at the end of the 170 days storage period. In general, piles under plastic cover presented opposite trends compared to all other piles. They acquired moisture rather than losing it, and showed gradual temperature trends instead of a typical peak-and-drop behaviour. Dry matter losses varied from 5.1% to 9.8%, and were highest for the uncovered treatment, and lowest for the plastic cover treatment. Under the conditions of north-western Italy, uncovered storage was a cost-effective option. Protecting the piles with some cover incurred more cost than it saved, resulting in a higher storage cost per unit energy. Although more expensive, sheltering the piles under a simple roof structure offered the benefit of a higher reduction of moisture content, which may turn the chips into a higher quality fuel. Of course, these results were closely related to the Southern European climate, and the specific year of the test. Occasional wetter years may overturn these results. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available