4.7 Article

Effect of H2/O2 addition in increasing the thermal efficiency of a diesel engine

Journal

FUEL
Volume 89, Issue 2, Pages 378-383

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2009.08.030

Keywords

Diesel engine; Hydrogen; Performance; Emission; Additive

Ask authors/readers for more resources

Using hydrogen as an additive to enhance the conventional diesel engine performance has been investigated by several researchers and the outcomes are very promising. However, the problems associated with the production and storage of pure hydrogen currently limits the application of pure hydrogen in diesel engine operation. On-board hydrogen-oxygen generator, which produces H-2/O-2 mixture through electrolysis of water, has significant potential to overcome these problems. This paper focuses on evaluating the performance enhancement of a conventional diesel engine through the addition of H-2/O-2 mixture, generated through water electrolysis. The experimental works were carried out under constant speed with varying load and amount of H-2/O-2 mixture. Results show that by using 4.84%, 6.06%, and 6.12% total diesel equivalent of H-2/O-2 mixture the brake thermal efficiency increased from 32.0% to 34.6%, 32.9% to 35.8% and 34.7% to 36.3% at 19 kW, 22 kW and 28 kW, respectively. These resulted in 15.07%, 15.16% and 14.96% fuel savings. The emissions of HC, CO2 and CO decreased, whereas the NOx emission increased. (c) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

Evaluation of Crude Oil Heat Exchanger Network Fouling Behavior Under Aging Conditions for Scheduled Cleaning

Abdullatif Lacina Diaby, Stanley Joseph Miklavcic, Saiful Bari, Jonas Addai-Mensah

HEAT TRANSFER ENGINEERING (2016)

Article Engineering, Mechanical

Simulation and Experimental Investigation of Guide Vane Length to Improve the Performance of a Diesel Engine Run With Biodiesel

S. Bari, Idris Saad

JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME (2016)

Article Energy & Fuels

Experimental Investigation of Diesel Engine Performance, Combustion and Emissions Using a Novel Series of Dioctyl Phthalate (DOP) Biofuels Derived from Microalgae

Farhad M. Hossain, Md. Nurun Nabi, Md. Mostafizur Rahman, Saiful Bari, Thuy Chu Van, S. M. Ashrafur Rahman, Thomas J. Rainey, Timothy A. Bodisco, Kabir Suara, Zoran Ristovski, Richard J. Brown

ENERGIES (2019)

Article Thermodynamics

Increasing Life Span by Cooling the Laminated Core Segment of Motors to Reduce Material and Energy Costs Over the Lifecycle of Motors

Stephen Lucas, Saiful Bari

Summary: Internal losses in motors generate unwanted heat, which is dissipated to the surrounding environment through conduction and convection. The application of thermoelectric cooler (TEC) has been found to reduce winding temperatures significantly, potentially extending the lifespan of motors.

JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS (2021)

Article Energy & Fuels

Spray analysis of Palm-Based biodiesel to correlate performance and combustion analysis of a compression ignition engine

F. Kafrawi, K. H. Lee, C. Zhang, S. Bari

Summary: The research aims to observe the spray behavior of palm oil diesel (POD) and compare it with the combustion performance of diesel. Engine simulation using software shows that POD has longer penetration lengths, higher average diameter, and heavier fuel molecules compared to diesel, resulting in lower power and higher fuel consumption. Blending diesel with POD can improve combustion performance.
Article Energy & Fuels

Research in Life Extension of Electrical Motors by Controlling the Impact of the Environment through Employing Peltier Effect

Stephen Lucas, Romeo Marian, Michael Lucas, Saiful Bari, Titilayo Ogunwa, Javaan Chahl

Summary: This paper explores the application of TEC modules to control core and winding temperatures in electrical machines, aiming to reduce the effects of thermal cycling and moisture issues. The research demonstrates that the temperature of the motor can be tightly controlled, thus reducing the effects of moisture and improving machine reliability.

ENERGIES (2022)

Article Thermodynamics

Performance and emission characteristics of a diesel engine with on-board produced hydrogen-oxygen injection

S. Bari, T. J. Dewar, C. Zhang

Summary: The research shows that adding H-2/O-2 gas mixture to the intake air of a diesel engine connected generator can significantly reduce the emission of PM concentrations and slightly reduce the emission of CO. The study also finds that there is no significant change in fuel mass flowrate, thermal efficiency, and bsfc.

THERMAL SCIENCE AND ENGINEERING PROGRESS (2022)

Article Thermodynamics

Cooling by Peltier effect and active control systems to thermally manage operating temperatures of electrical Machines (Motors and Generators)

S. Lucas, S. Bari, R. Marian, M. Lucas, J. Chahl

Summary: This paper investigates the incorporation of Thermoelectric Electric Coolers (TEC) into motor cooling systems to improve heat flow and reduce temperatures. Experimental results show that the addition of TEC can significantly decrease temperatures and increase insulation life or motor output.

THERMAL SCIENCE AND ENGINEERING PROGRESS (2022)

Proceedings Paper Engineering, Mechanical

Temperature and Force Generation in Surgical Bone Drilling

Chandana Samarasinghe, Mohammad Uddin, Saiful Bari, Cory Xian

Summary: This paper comprehensively explores the effect of key parameters on bone drilling performance, finding differences between bovine bone and Sawbone characteristics. Lower spindle speed and intermediate feedrate help reduce the risk of thermal necrosis.

PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME2019) (2021)

Proceedings Paper Energy & Fuels

Performance and emission analysis of a diesel engine running on palm oil diesel (POD)

S. Bari, S. N. Hossain

2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018) (2019)

Proceedings Paper Engineering, Multidisciplinary

Simulation of improvements to in-cylinder mixing of biodiesel with air by incorporating guide vanes into the air intake system

S. Bari, P. J. G. Johansen, A. J. T. Alherz

6TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING (2015)

Article Energy & Fuels

Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil

Yingna Du, Chen Huang, Wei Jiang, Qiangwei Yan, Yongfei Li, Gang Chen

Summary: In this study, anionic surfactants modified hydrotalcite was used as a flow improver for crude oil under low-temperature conditions. The modified hydrotalcite showed a significant viscosity reduction effect on crude oil. The mechanism of the modified hydrotalcite on viscosity and pour point of crude oil was explored through characterization and analysis of the modified hydrotalcite and oil samples.
Article Energy & Fuels

Effect of incorporated hybrid MIL-53(Al) and MWCNT into PES membrane for CO2/CH4 and CO2/N2 separation

Mohammad Saeid Rostami, Mohammad Mehdi Khodaei

Summary: In this study, a hybrid structure, MIL-53(Al)@MWCNT, was synthesized by combining MIL-53(Al) particles and -COOH functionalized multi-walled carbon nanotube (MWCNT). The hybrid structure was then embedded in a polyethersulfone (PES) polymer matrix to prepare a mixed matrix membrane (MMM) for CO2/CH4 and CO2/N2 separation. The addition of MWCNTs prevented MIL-53(Al) aggregation, improved membrane mechanical properties, and enhanced gas separation efficiency.
Article Energy & Fuels

Phase behaviour and physical properties of dimethyl ether (DME)/flue gas/ water/heavy oil systems under reservoir conditions

Yunlong Li, Desheng Huang, Xiaomeng Dong, Daoyong Yang

Summary: This study develops theoretical and experimental techniques to determine the phase behavior and physical properties of DME/flue gas/water/heavy oil systems. Eight constant composition expansion (CCE) tests are conducted to obtain new experimental data. A thermodynamic model is used to accurately predict saturation pressure and swelling factors, as well as the phase boundaries of N2/heavy oil systems and DME/CO2/heavy oil systems, with high accuracy.
Article Energy & Fuels

Comparison of CO2 absorption in DETA solution and [bmim]-[PF6] using thermodynamic and process modelling

Morteza Afkhamipour, Ebad Seifi, Arash Esmaeili, Mohammad Shamsi, Tohid N. Borhani

Summary: Non-conventional amines are being researched worldwide to overcome the limitations of traditional amines like MEA and MDEA. Adequate process and thermodynamic models are crucial for understanding the applicability and performance of these amines in CO2 absorption, but studies on process modeling for these amines are limited. This study used rate-based modeling and Deshmukh-Mather method to model CO2 absorption by DETA solution in a packed column, validated the model with experimental data, and conducted a sensitivity analysis of mass transfer correlations. The study also compared the CO2 absorption efficiency of DETA solution with an ionic solvent [bmim]-[PF6] and highlighted the importance of finding optimum operational parameters for maximum absorption efficiency.
Article Energy & Fuels

Interfacial tension of smart water and various crude oils

Arastoo Abdi, Mohamad Awarke, M. Reza Malayeri, Masoud Riazi

Summary: The utilization of smart water in EOR operations has gained attention, but more research is needed to understand the complex mechanisms involved. This study investigated the interfacial tension between smart water and crude oil, considering factors such as salt, pH, asphaltene type, and aged smart water. The results revealed that the hydration of ions in smart water plays a key role in its efficacy, with acidic and basic asphaltene acting as intrinsic surfactants. The pH also influenced the interfacial tension, and the aged smart water's interaction with crude oil depended on asphaltene type, salt, and salinity.
Article Energy & Fuels

Co-based metal-organic frameworks confined N-hydroxyphthalimide for enhancing aerobic desulfurization of diesel fuels

Dongao Zhu, Kun Zhu, Lixian Xu, Haiyan Huang, Jing He, Wenshuai Zhu, Huaming Li, Wei Jiang

Summary: In this study, cobalt-based metal-organic frameworks (Co-based MOFs) were used as supports and co-catalysts to confine the NHPI catalyst, solving the leaching issue. The NHPI@Co-MOF with carboxyl groups exhibited stronger acidity and facilitated the generation of active oxygen radicals O2•, resulting in enhanced catalytic activity. This research provides valuable insights into the selection of suitable organic linkers and broadens the research horizon of MOF hybrids in efficient oxidative desulfurization (ODS) applications.
Article Energy & Fuels

Influence of carbon-coated zero-valent iron-based nanoparticle concentration on continuous photosynthetic biogas upgrading

Edwin G. Hoyos, Gloria Amo-Duodu, U. Gulsum Kiral, Laura Vargas-Estrada, Raquel Lebrero, Rail Munoz

Summary: This study investigated the impact of carbon-coated zero-valent nanoparticle concentration on photosynthetic biogas upgrading. The addition of nanoparticles significantly increased microalgae productivity and enhanced nitrogen and phosphorus assimilation. The presence of nanoparticles also improved the quality of biomethane produced.
Article Energy & Fuels

Effect of aqueous phase recycling on iron evolution and environmental assessment during hydrothermal carbonization of dyeing sludge

Yao Xiao, Asma Leghari, Linfeng Liu, Fangchao Yu, Ming Gao, Lu Ding, Yu Yang, Xueli Chen, Xiaoyu Yan, Fuchen Wang

Summary: Iron is added as a flocculant in wastewater treatment and the hydrothermal carbonization (HTC) of sludge produces wastewater containing Fe. This study investigates the effect of aqueous phase (AP) recycling on hydrochar properties, iron evolution and environmental assessment during HTC of sludge. The results show that AP recycling process improves the dewatering performance of hydrochar and facilitates the recovery of Fe from the liquid phase.
Article Energy & Fuels

Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors

He Liang, Tao Wang, Zhenmin Luo, Jianliang Yu, Weizhai Yi, Fangming Cheng, Jingyu Zhao, Xingqing Yan, Jun Deng, Jihao Shi

Summary: This study investigated the influence of inhibitors (carbon dioxide, nitrogen, and heptafluoropropane) on the lower flammability limit of hydrogen and determined the critical inhibitory concentration needed for complete suppression. The impact of inhibitors on explosive characteristics was evaluated, and the inhibitory mechanism was analyzed with chemical kinetics. The results showed that with the increase of inhibitor quantity, the lower flammability limit of hydrogen also increased. The research findings can contribute to the safe utilization of hydrogen energy.
Article Energy & Fuels

Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to ?-valerolactone

Zonghui Liu, Zhongze Zhang, Yali Zhou, Ziling Wang, Mingyang Du, Zhe Wen, Bing Yan, Qingxiang Ma, Na Liu, Bing Xue

Summary: In this study, high-performance solid catalysts based on phosphotungstic acid (HPW) supported on Zr-SBA-15 were synthesized and evaluated for the one-pot conversion of furfural (FUR) to γ-valerolactone (GVL). The catalysts were characterized using various techniques, and the ratio of HPW and Zr was found to significantly affect the selectivity of GVL. The HPW/Zr-SBA-15 (2-4-15) catalyst exhibited the highest GVL yield (83%) under optimized reaction conditions, and it was determined that a balance between Bronsted acid sites (BAS) and Lewis acid sites (LAS) was crucial for achieving higher catalytic performance. The reaction parameters and catalyst stability were also investigated.
Article Energy & Fuels

Experimental study of droplet vaporization for conventional and renewable transportation fuels: Effects of physical properties and chemical composition

Michael Stoehr, Stephan Ruoff, Bastian Rauch, Wolfgang Meier, Patrick Le Clercq

Summary: As part of the global energy transition, an experimental study was conducted to understand the effects of different fuel properties on droplet vaporization for various conventional and alternative fuels. The study utilized a flow channel to measure the evolution of droplet diameters over time and distance. The results revealed the temperature-dependent effects of physical properties, such as boiling point, liquid density, and enthalpy of vaporization, and showed the complex interactions of preferential vaporization and temperature-dependent influences of physical properties for multi-component fuels.
Article Energy & Fuels

An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor

Yuan Zhuang, Ruikang Wu, Xinyan Wang, Rui Zhai, Changyong Gao

Summary: Through experimental validation and optimization of the chemical kinetic model, it was found that methanol can accelerate the oxidation reaction of ammonia, and methanol can be rapidly oxidized at high concentration. HO2 was found to generate a significant amount of OH radicals, facilitating the oxidation of methanol and ammonia. Rating: 7.5/10.
Article Energy & Fuels

Improving the biodiesel combustion and emission characteristics in the lean pre-vaporized premixed system using diethyl ether as a fuel additive

Radwan M. EL-Zohairy, Ahmed S. Attia, A. S. Huzayyin, Ahmed I. EL-Seesy

Summary: This paper presents a lab-scale experimental study on the impact of diethyl ether (DEE) as an additive to waste cooking oil biodiesel with Jet A-1 on combustion and emission features of a swirl-stabilized premixed flame. The addition of DEE to biodiesel significantly affects the flame temperature distribution and emissions. The W20D20 blend of DEE, biodiesel, and Jet A-1 shows similar flame temperature distribution to Jet A-1 and significantly reduces UHC, CO, and NOx emissions compared to Jet A-1.
Article Energy & Fuels

Condensation characteristics of ammonia vapor during supersonic separation: A novel approach to ammonia-hydrogen separation

Jiang Bian, Ziyuan Zhao, Yang Liu, Ran Cheng, Xuerui Zang, Xuewen Cao

Summary: This study presents a novel method for ammonia separation using supersonic flow and develops a mathematical model to investigate the condensation phenomenon. The results demonstrate that the L-P nucleation model accurately characterizes the nucleation process of ammonia at low temperatures. Numerical simulations also show that increasing pressure and concentration can enhance ammonia condensation efficiency.
Article Energy & Fuels

Multivariate time series prediction for CO2 concentration and flowrate of flue gas from biomass-fired power plants

Shiyuan Pan, Xiaodan Shi, Beibei Dong, Jan Skvaril, Haoran Zhang, Yongtu Liang, Hailong Li

Summary: Integrating CO2 capture with biomass-fired combined heat and power (bio-CHP) plants is a promising method for achieving negative emissions. This study develops a reliable data-driven model based on the Transformer architecture to predict the flowrate and CO2 concentration of flue gas in real time. The model validation shows high prediction accuracy, and the potential impact of meteorological parameters on model accuracy is assessed. The results demonstrate that the Transformer model outperforms other models and using near-infrared spectral data as input features improves the prediction accuracy.