4.7 Article

Sulphur dioxide removal using South African limestone/siliceous materials

Journal

FUEL
Volume 89, Issue 9, Pages 2549-2555

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2010.04.029

Keywords

Fly ash; Desulphurization; Hydration variables; Calcined limestone; Sorbents

Funding

  1. Tshwane University of Technology
  2. Universiti Sains Malaysia
  3. South African power producer-Eskom
  4. National Research Foundation

Ask authors/readers for more resources

This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO(2) removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900 degrees C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75 degrees C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87 degrees C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe(2)O(3) and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO(2) absorption capacity in terms of mol of SO(2) per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Energy & Fuels

Investigation of synergy and inhibition effects during co-gasification of tire char and biomass in CO2environment

Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This study investigates the co-gasification of tire char and rambutan peel. The results show that high proportion of tire char inhibits the gasification reaction, while higher content of biomass promotes the reaction. In addition, natural catalysts in the biomass also have a synergistic effect on the reaction.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Article Environmental Sciences

Alkali-modified biochar as a sustainable adsorbent for the low-temperature uptake of nitric oxide

S. Anthonysamy, P. Lahijani, M. Mohammadi, A. R. Mohamed

Summary: This study investigated the low-temperature oxidative uptake of NO on alkali-modified biochar, showing that the NO capture capacity was significantly improved after modification. The adsorption capacity of KOH-activated biochar reached 87.0 mg/g at 30 degrees C, mainly attributed to factors like oxygen functionalities and carbon defects.

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY (2022)

Article Materials Science, Ceramics

Electrochemical exfoliation of graphene using dual graphite electrodes by switching voltage and green molten salt electrolyte

Maher T. Alshamkhani, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, the switching voltage technique was used to efficiently exfoliate graphite in eutectic molten salts. The exfoliated graphene samples exhibited high production yields, low ID/IG ratios, and good electrical conductivities. Compared to constant voltage exfoliation, the switching voltage technique produced smoother graphene flakes with less agglomeration, crumbling, and wrinkling. Characterization analysis confirmed the smaller crystallite size, lower thickness, and higher quality and purity of the exfoliated graphene prepared using the switching voltage technique.

CERAMICS INTERNATIONAL (2022)

Article Environmental Sciences

Development of microwave-assisted nitrogen-modified activated carbon for efficient biogas desulfurization: a practical approach

Norhusna Mohamad Nor, Lau Lee Chung, Abdul Rahman Mohamed

Summary: The utilization of microwave heating and nitrogen-modification can generate adsorbents with superior performance for efficient removal of hydrogen sulfide (H2S). The modified palm shell activated carbon synthesized using microwave heating exhibited excellent properties, including a large surface area and new pore structures. Microwave heating assisted in the development of the adsorbent's properties and contributed to high removal of H2S at low adsorption temperature.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Review Energy & Fuels

Modification of biomass-derived biochar: A practical approach towards development of sustainable CO2 adsorbent

Nuradibah Mohd Amer, Pooya Lahijani, Maedeh Mohammadi, Abdul Rahman Mohamed

Summary: This article reviews the recent studies on biochar as a material for carbon capture, including its preparation and modification methods, and the influence on its physical, chemical, and physicochemical properties. Biochar exhibits high CO2 adsorption performance and sustainable performance, which are crucial for large-scale CO2 capture.

BIOMASS CONVERSION AND BIOREFINERY (2022)

Review Chemistry, Physical

Toward Excellence in Photocathode Engineering for Photoelectrochemical CO2 Reduction: Design Rationales and Current Progress

Lutfi Kurnianditia Putri, Boon-Junn Ng, Wee-Jun Ong, Siang-Piao Chai, Abdul Rahman Mohamed

Summary: This article reviews the potential, design strategies, and material progress of photoelectrochemical CO2 reduction reaction (PEC CO2RR), as well as summarizes and discusses various photocathode semiconductor materials. Finally, perspectives on the design of photocathodes for CO2RR and new paradigms in the field are proposed.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Applied

Adsorptive Dephenolization of Aqueous Solutions Using Thermally Modified Corn Cob: Mechanisms, Point of Zero Charge, and Isosteric Heat Studies

Ositadinma Chamberlain Iheanacho, Joseph Tagbo Nwabanne, Christopher Chiedozie Obi, Chinenye Adaobi Igwegbe, Chijioke Elijah Onu, Irvan Dahlan

Summary: In this study, the adsorptive dephenolization of aqueous solutions using thermally modified corn cob (TMCC) was investigated. The results showed that increasing the dosage and contact time of TMCC, as well as decreasing temperature and phenol concentration, favor the adsorption of phenol. The adsorption mechanism was found to involve intraparticle, film, and pore diffusion, as well as electrostatic attraction, pi-pi electron-donor interaction, and hydrogen bonding. The process was determined to be feasible, spontaneous, endothermic, and predominantly a physical process.

ADSORPTION SCIENCE & TECHNOLOGY (2023)

Review Chemistry, Inorganic & Nuclear

Methods and strategies for producing porous photocatalysts: Review

Bashaer Mahmoud Namoos, Abdul Rahman Mohamed, Khozema Ahmed Ali

Summary: The desire to improve photocatalytic activity is increasing, especially in semiconductors. Porous photocatalysts have been synthesized to improve surface area and reduce recombination of electron-hole pairs. This paper reviews recent works on porous photocatalysts, with a focus on synthesis and fabrication methods. The topotactic transition technique is the best method for metal oxide porous photocatalysts, while self-organizing blocks are the best method for polymeric porous photocatalysts, especially for growing and fixing 1D semiconductor nanomaterials on 3D and 2D semiconductors on 2D. The hard template method allows for better control of particle shape and size, but the template removal is non-ecofriendly, making the soft template method more favorable. The etching method, on the other hand, is suitable for fabricating porous photocatalysts through a membrane by utilizing the electrical charge created by moving electrons in the electrolyte as a driving force.

JOURNAL OF SOLID STATE CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Synthesis and characterization of MOF-5 incorporated waste- derived siliceous materials for the removal of malachite green dye from aqueous solution

Irvan Dahlan, Oh Hong Keat, Hamidi Abdul Aziz, Yung-Tse Hung

Summary: This study investigated the synthesis of MOF-5 and its modification for the removal of malachite green (MG) dye. Waste-derived siliceous materials, such as rice husk ash (RHA) and/or coal fly ash (CFA), were used to prepare modified MOF-5 adsorbents at different ratios. The MOF-5/RHA&CFA/2:1 adsorbent was found to be the most effective for MG dye removal from aqueous solutions. The adsorption characteristics of the modified MOF-5 for MG dye removal were studied by varying various parameters.

SUSTAINABLE CHEMISTRY AND PHARMACY (2023)

Review Engineering, Environmental

Sulfur dioxide catalytic reduction for environmental sustainability and circular economy: A review

Michelle Mei Xue Lum, Kim Hoong Ng, Sin Yuan Lai, Abdul Rahman Mohamed, Abdulkareem Ghassan Alsultan, Yun Hin Taufiq-Yap, Mei Kee Koh, Mohamad Azuwa Mohamed, Dai-Viet N. Vo, Manjulla Subramaniam, Kyle Sebastian Mulya, Nathasya Imanuella

Summary: Air pollution from untreated sulfur dioxide-rich flue gas is a major environmental and human health issue. Many sulfur dioxide removal technologies have been developed, but conventional methods generate by-products. Catalytic reduction of sulfur dioxide offers a sustainable solution with high efficiency and the recovery of valuable solid sulfur. This review discusses recent advances and the potential of this technology.

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION (2023)

Article Engineering, Environmental

Development of jackfruit (Artocarpus heterophyllus) peel waste as a new solid catalyst: Biodiesel synthesis, optimization and characterization

Andi Mulkan, Nurin Wahidah Mohd Zulkifli, Husni Husin, Irvan Dahlan, S. Syafiie

Summary: This study focuses on converting jackfruit peel waste into a solid catalyst for biodiesel synthesis. By calcining the peel waste ash at different temperatures, it was found that calcination at 500 degrees C yielded the highest ash production of 92.38%. Potassium, calcium, and magnesium were identified as significant components in the catalyst, making it a promising candidate for biodiesel synthesis. The optimal conditions for the synthesis process were determined using response surface methodology, resulting in a methyl ester content of 98.88%.

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION (2023)

Review Chemistry, Multidisciplinary

Retrospective insights into recent MXene-based catalysts for CO2 electro/photoreduction: how far have we gone?

Xin-Quan Tan, Wuwei Mo, Xinlong Lin, Jian Yiing Loh, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: The electro/photocatalytic CO2 reduction reaction (CO2RR) is an important approach for the synthesis of renewable fuels and value-added chemicals. MXenes, a type of 2D transition metal carbides, nitrides, and carbonitrides, show great potential in electrocatalysis and photocatalysis due to their unique properties. This review provides an overview of recent advances in MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR, including their structure, synthesis pathways, and activity enhancement strategies. The review also discusses the current state of research in the field and proposes future perspectives.

NANOSCALE (2023)

Article Engineering, Environmental

A metal-free electrochemically exfoliated graphene/graphitic carbon nitride nanocomposite for CO2 photoreduction to methane under visible light irradiation

Maher T. Alshamkhani, Lutfi Kurnianditia Putri, Pooya Lahijani, Keat Teong Lee, Abdul Rahman Mohamed

Summary: In this study, an electrochemically exfoliated graphene/graphite carbon nitride ((EG)/g-C3N4) heterojunction photocatalyst was synthesized for CO2 photoreduction to methane. The best-performing photocatalyst (0.075 EG-CN) showed a significant enhancement in CH4 production with 98.6% selectivity after 6 hours of light irradiation compared to pure CN. The developed photocatalyst exhibited high stability after consecutive cycles of CO2 photoreduction to CH4.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Review Chemistry, Physical

Point-to-face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications

Xin-Quan Tan, Sue-Faye Ng, Abdul Rahman Mohamed, Wee-Jun Ong

Summary: This article introduces the recent advances in experimental and computational studies on the interfacial design of 0D nanostructures on 2D graphitic carbon nitride (g-C3N4). By engineering point-to-face contact between 2D g-C3N4 and 0D nanomaterials, heterojunction interfaces can be formed, which is beneficial for photocatalytic reactions. Different types of 0D nanostructures and synthesis strategies for photocatalytic applications are discussed.

CARBON ENERGY (2022)

Article Chemistry, Physical

Uncovering the multifaceted roles of nitrogen defects in graphitic carbon nitride for selective photocatalytic carbon dioxide reduction: a density functional theory study

Jie-Yinn Tang, Chen-Chen Er, Lling-Lling Tan, Yi-Hao Chew, Abdul Rahman Mohamed, Siang-Piao Chai

Summary: This study systematically unraveled the effect of defect engineering on the properties and catalytic performance of graphitic carbon nitride (g-C3N4). By introducing various defect sites, the study achieved improved charge separation efficiency and CO2 adsorption affinity in g-C3N, providing a more feasible pathway for CO2 reduction.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2022)

Article Energy & Fuels

Preparation of surface modified nano-hydrotalcite and its applicaiton as a flow improver for crude oil

Yingna Du, Chen Huang, Wei Jiang, Qiangwei Yan, Yongfei Li, Gang Chen

Summary: In this study, anionic surfactants modified hydrotalcite was used as a flow improver for crude oil under low-temperature conditions. The modified hydrotalcite showed a significant viscosity reduction effect on crude oil. The mechanism of the modified hydrotalcite on viscosity and pour point of crude oil was explored through characterization and analysis of the modified hydrotalcite and oil samples.
Article Energy & Fuels

Effect of incorporated hybrid MIL-53(Al) and MWCNT into PES membrane for CO2/CH4 and CO2/N2 separation

Mohammad Saeid Rostami, Mohammad Mehdi Khodaei

Summary: In this study, a hybrid structure, MIL-53(Al)@MWCNT, was synthesized by combining MIL-53(Al) particles and -COOH functionalized multi-walled carbon nanotube (MWCNT). The hybrid structure was then embedded in a polyethersulfone (PES) polymer matrix to prepare a mixed matrix membrane (MMM) for CO2/CH4 and CO2/N2 separation. The addition of MWCNTs prevented MIL-53(Al) aggregation, improved membrane mechanical properties, and enhanced gas separation efficiency.
Article Energy & Fuels

Phase behaviour and physical properties of dimethyl ether (DME)/flue gas/ water/heavy oil systems under reservoir conditions

Yunlong Li, Desheng Huang, Xiaomeng Dong, Daoyong Yang

Summary: This study develops theoretical and experimental techniques to determine the phase behavior and physical properties of DME/flue gas/water/heavy oil systems. Eight constant composition expansion (CCE) tests are conducted to obtain new experimental data. A thermodynamic model is used to accurately predict saturation pressure and swelling factors, as well as the phase boundaries of N2/heavy oil systems and DME/CO2/heavy oil systems, with high accuracy.
Article Energy & Fuels

Comparison of CO2 absorption in DETA solution and [bmim]-[PF6] using thermodynamic and process modelling

Morteza Afkhamipour, Ebad Seifi, Arash Esmaeili, Mohammad Shamsi, Tohid N. Borhani

Summary: Non-conventional amines are being researched worldwide to overcome the limitations of traditional amines like MEA and MDEA. Adequate process and thermodynamic models are crucial for understanding the applicability and performance of these amines in CO2 absorption, but studies on process modeling for these amines are limited. This study used rate-based modeling and Deshmukh-Mather method to model CO2 absorption by DETA solution in a packed column, validated the model with experimental data, and conducted a sensitivity analysis of mass transfer correlations. The study also compared the CO2 absorption efficiency of DETA solution with an ionic solvent [bmim]-[PF6] and highlighted the importance of finding optimum operational parameters for maximum absorption efficiency.
Article Energy & Fuels

Interfacial tension of smart water and various crude oils

Arastoo Abdi, Mohamad Awarke, M. Reza Malayeri, Masoud Riazi

Summary: The utilization of smart water in EOR operations has gained attention, but more research is needed to understand the complex mechanisms involved. This study investigated the interfacial tension between smart water and crude oil, considering factors such as salt, pH, asphaltene type, and aged smart water. The results revealed that the hydration of ions in smart water plays a key role in its efficacy, with acidic and basic asphaltene acting as intrinsic surfactants. The pH also influenced the interfacial tension, and the aged smart water's interaction with crude oil depended on asphaltene type, salt, and salinity.
Article Energy & Fuels

Co-based metal-organic frameworks confined N-hydroxyphthalimide for enhancing aerobic desulfurization of diesel fuels

Dongao Zhu, Kun Zhu, Lixian Xu, Haiyan Huang, Jing He, Wenshuai Zhu, Huaming Li, Wei Jiang

Summary: In this study, cobalt-based metal-organic frameworks (Co-based MOFs) were used as supports and co-catalysts to confine the NHPI catalyst, solving the leaching issue. The NHPI@Co-MOF with carboxyl groups exhibited stronger acidity and facilitated the generation of active oxygen radicals O2•, resulting in enhanced catalytic activity. This research provides valuable insights into the selection of suitable organic linkers and broadens the research horizon of MOF hybrids in efficient oxidative desulfurization (ODS) applications.
Article Energy & Fuels

Influence of carbon-coated zero-valent iron-based nanoparticle concentration on continuous photosynthetic biogas upgrading

Edwin G. Hoyos, Gloria Amo-Duodu, U. Gulsum Kiral, Laura Vargas-Estrada, Raquel Lebrero, Rail Munoz

Summary: This study investigated the impact of carbon-coated zero-valent nanoparticle concentration on photosynthetic biogas upgrading. The addition of nanoparticles significantly increased microalgae productivity and enhanced nitrogen and phosphorus assimilation. The presence of nanoparticles also improved the quality of biomethane produced.
Article Energy & Fuels

Effect of aqueous phase recycling on iron evolution and environmental assessment during hydrothermal carbonization of dyeing sludge

Yao Xiao, Asma Leghari, Linfeng Liu, Fangchao Yu, Ming Gao, Lu Ding, Yu Yang, Xueli Chen, Xiaoyu Yan, Fuchen Wang

Summary: Iron is added as a flocculant in wastewater treatment and the hydrothermal carbonization (HTC) of sludge produces wastewater containing Fe. This study investigates the effect of aqueous phase (AP) recycling on hydrochar properties, iron evolution and environmental assessment during HTC of sludge. The results show that AP recycling process improves the dewatering performance of hydrochar and facilitates the recovery of Fe from the liquid phase.
Article Energy & Fuels

Investigation on the lower flammability limit and critical inhibition concentration of hydrogen under the influence of inhibitors

He Liang, Tao Wang, Zhenmin Luo, Jianliang Yu, Weizhai Yi, Fangming Cheng, Jingyu Zhao, Xingqing Yan, Jun Deng, Jihao Shi

Summary: This study investigated the influence of inhibitors (carbon dioxide, nitrogen, and heptafluoropropane) on the lower flammability limit of hydrogen and determined the critical inhibitory concentration needed for complete suppression. The impact of inhibitors on explosive characteristics was evaluated, and the inhibitory mechanism was analyzed with chemical kinetics. The results showed that with the increase of inhibitor quantity, the lower flammability limit of hydrogen also increased. The research findings can contribute to the safe utilization of hydrogen energy.
Article Energy & Fuels

Phosphotungstic acid supported on Zr-SBA-15 as an efficient catalyst for one-pot conversion of furfural to ?-valerolactone

Zonghui Liu, Zhongze Zhang, Yali Zhou, Ziling Wang, Mingyang Du, Zhe Wen, Bing Yan, Qingxiang Ma, Na Liu, Bing Xue

Summary: In this study, high-performance solid catalysts based on phosphotungstic acid (HPW) supported on Zr-SBA-15 were synthesized and evaluated for the one-pot conversion of furfural (FUR) to γ-valerolactone (GVL). The catalysts were characterized using various techniques, and the ratio of HPW and Zr was found to significantly affect the selectivity of GVL. The HPW/Zr-SBA-15 (2-4-15) catalyst exhibited the highest GVL yield (83%) under optimized reaction conditions, and it was determined that a balance between Bronsted acid sites (BAS) and Lewis acid sites (LAS) was crucial for achieving higher catalytic performance. The reaction parameters and catalyst stability were also investigated.
Article Energy & Fuels

Experimental study of droplet vaporization for conventional and renewable transportation fuels: Effects of physical properties and chemical composition

Michael Stoehr, Stephan Ruoff, Bastian Rauch, Wolfgang Meier, Patrick Le Clercq

Summary: As part of the global energy transition, an experimental study was conducted to understand the effects of different fuel properties on droplet vaporization for various conventional and alternative fuels. The study utilized a flow channel to measure the evolution of droplet diameters over time and distance. The results revealed the temperature-dependent effects of physical properties, such as boiling point, liquid density, and enthalpy of vaporization, and showed the complex interactions of preferential vaporization and temperature-dependent influences of physical properties for multi-component fuels.
Article Energy & Fuels

An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor

Yuan Zhuang, Ruikang Wu, Xinyan Wang, Rui Zhai, Changyong Gao

Summary: Through experimental validation and optimization of the chemical kinetic model, it was found that methanol can accelerate the oxidation reaction of ammonia, and methanol can be rapidly oxidized at high concentration. HO2 was found to generate a significant amount of OH radicals, facilitating the oxidation of methanol and ammonia. Rating: 7.5/10.
Article Energy & Fuels

Improving the biodiesel combustion and emission characteristics in the lean pre-vaporized premixed system using diethyl ether as a fuel additive

Radwan M. EL-Zohairy, Ahmed S. Attia, A. S. Huzayyin, Ahmed I. EL-Seesy

Summary: This paper presents a lab-scale experimental study on the impact of diethyl ether (DEE) as an additive to waste cooking oil biodiesel with Jet A-1 on combustion and emission features of a swirl-stabilized premixed flame. The addition of DEE to biodiesel significantly affects the flame temperature distribution and emissions. The W20D20 blend of DEE, biodiesel, and Jet A-1 shows similar flame temperature distribution to Jet A-1 and significantly reduces UHC, CO, and NOx emissions compared to Jet A-1.
Article Energy & Fuels

Condensation characteristics of ammonia vapor during supersonic separation: A novel approach to ammonia-hydrogen separation

Jiang Bian, Ziyuan Zhao, Yang Liu, Ran Cheng, Xuerui Zang, Xuewen Cao

Summary: This study presents a novel method for ammonia separation using supersonic flow and develops a mathematical model to investigate the condensation phenomenon. The results demonstrate that the L-P nucleation model accurately characterizes the nucleation process of ammonia at low temperatures. Numerical simulations also show that increasing pressure and concentration can enhance ammonia condensation efficiency.
Article Energy & Fuels

Multivariate time series prediction for CO2 concentration and flowrate of flue gas from biomass-fired power plants

Shiyuan Pan, Xiaodan Shi, Beibei Dong, Jan Skvaril, Haoran Zhang, Yongtu Liang, Hailong Li

Summary: Integrating CO2 capture with biomass-fired combined heat and power (bio-CHP) plants is a promising method for achieving negative emissions. This study develops a reliable data-driven model based on the Transformer architecture to predict the flowrate and CO2 concentration of flue gas in real time. The model validation shows high prediction accuracy, and the potential impact of meteorological parameters on model accuracy is assessed. The results demonstrate that the Transformer model outperforms other models and using near-infrared spectral data as input features improves the prediction accuracy.