4.7 Article

Improvement of iron-mediated oxidative DNA damage in patients with transfusion-dependent myelodysplastic syndrome by treatment with deferasirox

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 53, Issue 4, Pages 643-648

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2012.06.006

Keywords

Myelodysplastic syndrome; Oxidative DNA damage; Iron chelation

Funding

  1. Grants-in-Aid for Scientific Research [23890169, 24590985] Funding Source: KAKEN

Ask authors/readers for more resources

Myelodysplastic syndrome (MDS) is characterized by dysplastic and ineffective hematopoiesis, peripheral blood cytopenias, and a risk of leukemic transformation. Most MDS patients eventually require red blood cell (RBC) transfusions for anemia and consequently develop iron overload. Excess free iron in cells catalyzes generation of reactive oxygen species that cause oxidative stress, including oxidative DNA, damage. However, it is uncertain how iron-mediated oxidative stress affects the pathophysiology of MDS. This study included MDS patients who visited our university hospital and affiliated hospitals (n=43). Among them, 13 patients received iron chelation therapy when their serum ferritin (SF) level was greater than 1000 ng/mL or they required more than 20 RBC transfusions (or 100 rnL/kg of RBC). We prospectively analyzed 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in peripheral blood mononuclear cells (PBMC) obtained from MDS patients before and after iron chelator, deferasirox, administration. We showed that the 8-OHdG levels in MDS patients were significantly higher than those in healthy volunteers and were positively correlated with SF and chromosomal abnormalities. Importantly, the 8-OHdG levels in PBMC of MDS patients significantly decreased after deferasirox administration, suggesting that iron chelation reduced oxidative DNA damage. Thus, excess iron could contribute to the pathophysiology of MDS and iron chelation therapy could improve the oxidative DNA damage in MDS patients. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available