4.7 Article

Consideration of strong winds, their directional distribution and snow loading in wind risk assessment related to landscape level forest planning

Journal

FOREST ECOLOGY AND MANAGEMENT
Volume 261, Issue 3, Pages 710-719

Publisher

ELSEVIER
DOI: 10.1016/j.foreco.2010.11.030

Keywords

Critical wind speed; Heuristic optimization; Wind damage; Snow damage; Landscape metrics; Risk management; Simulated annealing; Spatial optimization

Categories

Funding

  1. Academy of Finland
  2. University of Eastern Finland
  3. Finnish Meteorological Institute

Ask authors/readers for more resources

Forest planning needs to assess various risks that may cause economic or other losses to forest owners. This study aimed at developing a wind risk assessment method, which considers the occurrence and directional distribution of strong winds, and the effect of snow loads and support by neighbouring trees on the expected wind damage. For this purpose, regression models were developed for predicting the critical wind speeds needed to uproot Scots pine, Norway spruce and birch trees at the downwind stand edges in Finnish conditions under unfrozen soil conditions, based on the characteristics of both downwind and upwind stand, and additional snow load on tree crowns. Furthermore, a risk index was developed for the forest landscape, based on the critical wind speeds of stands, occurrence of strong winds and their directional distribution, and the prevailing snow loading in the region. Thereafter, the mean risk index was used as an objective variable in heuristic optimization in forest planning to demonstrate how the optimal cuttings and the spatial layout of the landscape may change depending on the wind and snow conditions and the support that trees provide to each other. Our results show that the directional distribution of strong winds shape the optimal forest landscape structure markedly. Consideration of snow loading in the calculation of critical wind speeds increased the mean risk clearly and produced slightly more aggregated landscape structures in terms of tree height. The consideration of support that neighbouring trees provide to each other had minor effects. To conclude, the consideration of risk of wind induced damages in forest planning calculations clearly affects the selected cutting strategies and impacts the spatial layout of the landscape. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available