4.4 Article

The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation

Journal

JOURNAL OF THEORETICAL BIOLOGY
Volume 380, Issue -, Pages 144-155

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2015.05.010

Keywords

Lamellipodium; Actin filament; Finite element

Funding

  1. Vienna Science and Technology Fund [MA09-004, LS13-029]

Ask authors/readers for more resources

The crawling motility of many cell types relies on lamellipodia, flat protrusions spreading on flat substrates but (on cells in suspension) also growing into three-dimensional space. Lamellipodia consist of a plasma membrane wrapped around an oriented actin filament meshwork. It is well known that the actin density is controlled by coordinated polymerization, branching, and capping processes, but the mechanisms producing the small aspect ratios of lamellipodia (hundreds of nm thickness vs. several mu m lateral and inward extension) remain unclear. The main hypothesis of this work is a strong influence of the local geometry of the plasma membrane on the actin dynamics. This is motivated by observations of co-localization of proteins with I-BAR domains (like IRSp53) with polymerization and branching agents along the membrane. The I-BAR domains are known to bind to the membrane and to prefer and promote membrane curvature. This hypothesis is translated into a stochastic mathematical model where branching and capping rates, and polymerization speeds depend on the local membrane geometry and branching directions are influenced by the principal curvature directions. This requires the knowledge of the deformation of the membrane, being described in a quasi-stationary approximation by minimization of a modified Helfrich energy, subject to the actin filaments acting as obstacles. Simulations with this model predict pieces of flat lamellipodia without any prescribed geometric restrictions. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available