4.7 Article Proceedings Paper

Texture design for products using food hydrocolloids

Journal

FOOD HYDROCOLLOIDS
Volume 26, Issue 2, Pages 412-420

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2011.02.014

Keywords

Texture design; Food polysaccharide; Electromyography; Acoustic analysis of the swallowing sound; Dysphagia

Funding

  1. Grants-in-Aid for Scientific Research [22240076] Funding Source: KAKEN

Ask authors/readers for more resources

Some in vivo measurements have been carried out using polysaccharide gels of different physical properties (i.e., elastic and plastic) and degrees of hardness. In vivo measurements tested included electromyography (EMG) and acoustic analysis of the swallowing sound to investigate the dynamic changes of food texture during oral processing. As a model of foods for dysphagia patients, the gels were soft enough to be eaten by compression between the tongue and the hard palate without biting by the teeth. From EMG, no significant differences were found between elastic gels and plastic gels in the duration of oral processing and the EMG activity of the suprahyoid musculature when compared at equivalent hardness. The EMG activity of the suprahyoid musculature correlated well with the compression load of gels at 95% strain. From the acoustic analysis, the plastic gels required shorter time to transfer through the pharynx and were scored higher in sensory cohesiveness than the elastic gels. Results indicate that oral processing of soft gels requires equivalent EMG activity of the suprahyoid musculature when the gel hardness is the same. Also, the plastic gels flow through the pharynx as one coherent bolus with smaller variation of the flow speed. Texture of foods for dysphagia patients should be optimized in terms of viscoelasticity so that they can easily transform to swallowable bolus during oral processing. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available