4.7 Article

Regulation of patulin-induced oxidative stress processes in the fission yeast Schizosaccharomyces pombe

Journal

FOOD AND CHEMICAL TOXICOLOGY
Volume 50, Issue 10, Pages 3792-3798

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fct.2012.07.001

Keywords

Antioxidant enzyme; Fission yeast; Glutathione; Mycotoxin; Oxidative stress; Patulin

Funding

  1. [RE-G_DD_INFRA_09 NKTH]

Ask authors/readers for more resources

Patulin (PAT), is one of the most widely disseminated mycotoxins found in agricultural products. In this study the PAT-induced accumulation of reactive oxygen species (ROS) and the regulation of the specific activities of antioxidant enzymes were investigated in the single cell eukaryotic organism Schizosaccharomyces pombe. In comparison with the untreated cells, 500 mu M PAT treatment caused a 43% decrease in the concentration of the main intracellular antioxidant, glutathione (GSH); this depletion of GSH initiated a 2.44- and a 2.6-fold accumulation of superoxide anion and hydrogen peroxide, respectively, but did not increase the concentration of hydroxyl radicals; the reduction of ROS-induced adaptation processes via the activation of Pap1 transcription factor resulted in significantly increased specific activities of Cu/Zn superoxide dismutase, catalase and glutathione S-transferase to protect the cells against the ROS-induced unbalanced redox state. However, no change was measured in the activities of glutathione reductase, glutathione peroxidase and glucose-6-phosphate dehydrogenase. It seems reasonable to assume that the temporary PAT-induced ROS accumulation plays a crucial role in adaptation processes. The adverse effects of PAT may be exerted mainly through the destruction of cellular membranes and protein/enzyme functions. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available