4.2 Article

Magnetohydrodynamics flow over a rapidly rotating axisymmetric wavy disk

Journal

FLUID DYNAMICS RESEARCH
Volume 43, Issue 4, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0169-5983/43/4/041405

Keywords

-

Funding

  1. Korea Research Foundation
  2. Korean Government [KRF-2009-0077233]

Ask authors/readers for more resources

A numerical study of Magnetohydrodynamics boundary layer flow over a rapidly rotating wavy disc was performed under which magnetic fields are imposed by a circular electric coil. The shape of the disc is assumed to be axisymmetric and sinusoidal in the radial direction, and semi-infinite space over the disc steadily rotating is occupied by an electrically conducting fluid. The study was conducted for the case where the representative Reynolds number is very large and the magnetic Reynolds number is negligibly small. The effect of Lorentz force on fluid motion was precisely investigated as the main external controlling force. The generalized boundary layer equation, including both magnetic field and heat flux, is derived to examine interactions among the effects of wavy surface shape, magnetic field and heat flux from the disc surface. Two cases of uniform magnetic field, much studied in previous research, and of non-uniform magnetic field, realized by a circular coil, have been scrutinized. Details of velocity profile, skin friction coefficient and heat transfer coefficient are given.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available